References
A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z
A
Abderrahmane, M., & Boukhetala, K. B. (2016). Two news approximations to standard normal distribution function. Journal of Applied & Computational Mathematics, 5(5), 1–2. doi:10.4172/2168-9679.1000328
Abernathy, R. W. (1988). Finding normal probabilities with a hand-held calculator. The Mathematics Teacher, 81(8), 651–652. doi:10.2307/27965982
Acock, A. C. (2008). A gentle introduction to Stata (2nd ed.). College Station, Tex: Stata Press.
Adams, A. G. (1969a). Algorithm 39: Areas under the normal curve. The Computer Journal, 12(2), 197–199. doi:10.1093/comjnl/12.2.197
Adams, A. G. (1969b). Remark on algorithm 304 [S15]: Normal curve integral. Communications of the ACM, 12(10), 565–566. doi:10.1145/363235.363253
Agresti, A., & Coull, B. A. (1998). Approximate Is Better than “Exact” for Interval Estimation of Binomial Proportions. The American Statistician, 52(2), 119–126. doi:10.2307/2685469
Albers, W., & Kallenberg, W. C. M. (1994). A simple approximation to the bivariate normal distribution with large correlation coefficient. Journal of Multivariate Analysis, 49(1), 87–96. doi:10.1006/jmva.1994.1015
Alexander, R. A., & Govern, D. M. (1994). A new and simpler approximation for ANOVA under variance heterogeneity. Journal of Educational Statistics, 19(2), 91–101. doi:10.2307/1165140
Alroy, J. (2015). A new twist on a very old binary similarity coefficient. Ecology, 96(2), 575–586. doi:10.1890/14-0471.1
Aludaat, K. M., & Alodat, M. T. (2008). A note on approximating the normal distribution function. Applied Mathematical Sciences, 2(9), 425–429.
Aspin, A. A. (1948). An examination and further development of a formula arising in the problem of comparing two mean values. Biometrika, 35(1/2), 88–96. doi:10.2307/2332631
Aspin, A. A., & Welch, B. L. (1949). Tables for use in comparisons whose accuracy involves two variances, separately estimated. Biometrika, 36(3/4), 290. doi:10.2307/2332668
B
Badhe, S. K. (1976). New approximation of the normal distribution function. Communications in Statistics - Simulation and Computation, 5(4), 173–176. doi:10.1080/03610917608812017
Bagby, R. J. (1995). Calculating normal probabilities. The American Mathematical Monthly, 102(1), 46–49. doi:10.1080/00029890.1995.11990532
Baguley, T. (2004). An Introduction to Sphericity. Retrieved July 1, 2019, from http://homepages.gold.ac.uk/aphome/spheric.html
Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. Behavior Research Methods, 37(3), 379–384. doi:10.3758/BF03192707
Bartz, A. E. (1999). Basic statistical concepts (4th ed). Upper Saddle River, NJ: Merrill.
Baughman, A. L. (1988). A FORTRAN function for the bivariate normal integral. Computer Methods and Programs in Biomedicine, 27(2), 169–174. doi:10.1016/0169-2607(88)90028-4
Becker, M. P., & Clogg, C. C. (1988). A note on approximating correlations from Odds Ratios. Sociological Methods & Research, 16(3), 407–424. doi:10.1177/0049124188016003003
Berger, V. W. (2017). An empirical demonstration of the need for exact tests. Journal of Modern Applied Statistical Methods, 16(1), 34–50. doi:10.22237/jmasm/1493596920
Bergsma, W. (2013). A bias-correction for Cramér’s and Tschuprow’s. Journal of the Korean Statistical Society, 42(3), 323–328. doi:10.1016/j.jkss.2012.10.002
Bergson, A. (1968). Certification of and remark on algorithm 304: Normal curve integral. Communications of the ACM, 11(4), 271. doi:10.1145/362991.363048
Beri, G. C. (2010). Business Statistics (3rd ed). New Delhi: Tata McGraw-Hill Education.
Berry, K. J., Johnston, J. E., & Mielke, P. W. (2007). An alternative measure of effect size for Cochran’s Q test for related proportions. Perceptual and Motor Skills, 104(3), 1236–1242. doi:10.2466/pms.104.4.1236-1242
Bhapkar, V. P. (1966). A note on the equivalence of two test criteria for hypotheses in categorical data. Journal of the American Statistical Association, 61(313), 228–235. doi:10.2307/2283057
Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (2007). Discrete multivariate analysis. Springer.
Boiroju, N. K., & Ramakrishna, R. (2014). A combined approximation to t-distribution. International Journal of Scientific and Engineering Research, 5(4), 108–111.
Bonett, D. G., & Price, R. M. (2005). Inferential methods for the tetrachoric correlation coefficient. Journal of Educational and Behavioral Statistics, 30(2), 213–225. doi:10.3102/10769986030002213
Bonett, D. G., & Price, R. M. (2007). Statistical inference for generalized yule coefficients in 2 × 2 contingency tables. Sociological Methods & Research, 35(3), 429–446. doi:10.1177/0049124106292358
Bonferroni, C. E. (1935). Il calcolo delle assicurazioni su gruppi di teste. In Studi in Onore del Professore Salvatore Ortu Carboni (pp. 13–60).
Borth, D. M. (1973). A modification of Owen’s method for computing the bi-variate normal integral. Applied Statistics, 22(1), 82. doi:10.2307/2346306
Bowker, A. H. (1948). A test for symmetry in contingency tables. Journal of the American Statistical Association, 43(244), 572–574. doi:10.2307/2280710
Bowling, S. R., Khasawneh, M. T., Kaewkuekool, S., & Cho, B. R. (2009). A logistic approximation to the cumulative normal distribution. Journal of Industrial Engineering and Management, 2(1),. doi:10.3926/jiem..v2n1.p114-127
Box, G. E. P. (1954a). Some theorems on quadratic forms applied in the study of analysis of variance problems, I: Effect of inequality of variance in the one-way classification. The Annals of Mathematical Statistics, 25(2), 290–302. doi:10.1214/aoms/1177728786
Box, G. E. P. (1954b). Some theorems on quadratic forms applied in the study of analysis of variance problems II: Effects of inequality of variance and of correlation between errors in the two-way classification. The Annals of Mathematical Statistics, 25(3), 484–498. doi10.1214/aoms/1177728717
Brown, M. B. (1977). Algorithm AS 116: The tetrachoric correlation and its asymptotic standard error. Applied Statistics, 26(3), 343. doi:10.2307/2346985
Brown, M. B., & Forsythe, A. B. (1974). The small sample behavior of some statistics which test the equality of several means. Technometrics, 16(1), 129–132. doi:10.1080/00401706.1974.10489158
Bryc, W. (2002). A uniform approximation to the right normal tail integral. Applied Mathematics and Computation, 127(2–3), 365–374. doi:10.1016/S0096-3003(01)00015-7
Bunday, B. D., Bokhari, S. M. H., & Khan, K. H. (1997). A new algorithm for the normal distribution function. Test, 6(2), 369–377. doi:10.1007/BF02564704
Burr, I. W. (1967). A useful approximation to the normal distribution function, with application to simulation. Technometrics, 9(4), 647–651. doi:10.1080/00401706.1967.10490512
C
Cadwell, J. H. (1951). The bivariate normal integral. Biometrika, 38(3/4), 475. doi:10.2307/2332596
Cafiso, S., Di Graziano, A., & Pappalardo, G. (2013). Using the Delphi method to evaluate opinions of public transport managers on bus safety. Safety Science, 57, 254–263. doi:10.1016/j.ssci.2013.03.001
Cavus, M., & Yazıcı, B. (2020). Testing the equality of normal distributed and independent groups’ means under unequal variances by doex package. The R Journal, 12(2), 134. doi:10.32614/RJ-2021-008
Chaudhary, K. K. S., Kumar, A., & Alka. (2009). Statistics in management studies (10th ed). Meerut: Krishna Prakashan Media.
Chinn, S. (2000). A simple method for converting an odds ratio to effect size for use in meta-analysis. Statistics in Medicine, 19(22), 3127–3131. doi:10.1002/1097-0258(20001130)19:22<3127::aid-sim784>3.0.co;2-m
Choudhury, A. (2014). A simple approximation to the area under standard normal curve. Mathematics and Statistics, 2(3), 147–149. doi:10.13189/ms.2014.020307
Choudhury, A., Ray, S., & Sarkar, P. (2007). Approximating the cumulative distribution function of the normal distribution. Journal of Statistical Research, 41(1), 59–67.
Choudhury, A., & Roy, P. (2009). A fairly accurate approximation to the area under normal curve. Communications in Statistics - Simulation and Computation, 38(7), 1485–1492. doi:10.1080/03610910903009344
Cleveland, W. S., & McGill, R. (1984). Graphical perception: Theory, experimentation, and application to the development of graphical methods. Journal of the American Statistical Association, 79(387), 531–554. doi:10.2307/2288400
Cochran, W. G. (1937). Problems arising in the analysis of a series of similar experiments. Supplement to the Journal of the Royal Statistical Society, 4(1), 102–118. doi:10.2307/2984123
Cochran, W. G. (1954). Some methods for strengthening the common chi-square tests. Biometrics, 10(4), 417. doi:10.2307/3001616
Cody, W. J. (1969). Rational Chebyshev approximations for the error function. Mathematics of Computation, 23(107), 631–637. doi:10.1090/S0025-5718-1969-0247736-4
Cody, W. J. (1993). Algorithm 715: SPECFUN–a portable FORTRAN package of special function routines and test drivers. ACM Transactions on Mathematical Software, 19(1), 22–30. doi:10.1145/151271.151273
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed). Hillsdale, N.J: L. Erlbaum Associates.
Cole, L. C. (1949). The measurement of interspecific associaton. Ecology, 30(4), 411–424. doi:10.2307/1932444
Cole, T. J. (2015). Too many digits: the presentation of numerical data. Archives of Disease in Childhood, 100(7), 608–609. doi:10.1136/archdischild-2014-307149
Cooper, B. E. (1968). Algorithm AS 2: The normal integral. Applied Statistics, 17(2), 186. doi:10.2307/2985683
Cooper, B. E. (1968). Algorithm AS 4: An auxiliary function for distribution integrals. Journal of the Royal Statistical Society. Series C (Applied Statistics), 17(2), 190–192. doi:10.2307/2985685
Cooper, B. E. (1969). Algorithm AS 4: An auxiliary function for distribution integrals: Corrigenda. Applied Statistics, 18(1), 118. doi:10.2307/2346457
Cox, D. R., & Wermuth, N. (1991). A simple approximation for bivariate and trivariate normal integrals. International Statistical Review / Revue Internationale de Statistique, 59(2), 263. doi:10.2307/1403446
Cramér, H. (1946). Mathematical methods of statistics. Princeton: Princeton University Press.
Crawford, M., & Techo, R. (1962). Algorithm 123: Real error function, ERF( x ). Communications of the ACM, 5(9), 483. doi:10.1145/368834.368893
Cressie, N., & Read, T. R. C. (1984). Multinomial goodness-of-fit tests. Journal of the Royal Statistical Society: Series B (Methodological), 46(3), 440–464. doi:10.1111/j.2517-6161.1984.tb01318.x
Cribbie, R. A., Fiksenbaum, L., Keselman, H. J., & Wilcox, R. R. (2012). Effect of non-normality on test statistics for one-way independent groups designs: Effects of non-normality on test statistics. British Journal of Mathematical and Statistical Psychology, 65(1), 56–73. doi:10.1111/j.2044-8317.2011.02014.x
Cureton, E. E. (1956). Rank-biserial correlation. Psychometrika, 21(3), 287–290. doi:10.1007/BF02289138
Cyvin, S. J. (1964). Algorithm 226: Normal distribution function. Communications of the ACM, 7(5), 295. doi:10.1145/364099.364315
D
Daley, D. J. (1974). Computation of bi- and tri-variate normal integrals. Applied Statistics, 23(3), 435. doi:10.2307/2347136
De Vaus, D. A. (2002). Surveys in social research (5th ed.). London: Routledge.
Delacre, M., Leys, C., Mora, Y. L., & Lakens, D. (2019). Taking parametric assumptions seriously: Arguments for the use of Welch’s F-test instead of the classical F-test in one-way ANOVA. International Review of Social Psychology, 32(1), 1–12. doi:10.5334/irsp.198
Derenzo, S. E. (1977). Approximations for hand calculators using small integer coefficients. Mathematics of Computation, 31(137), 214–222. doi:10.1090/S0025-5718-1977-0423761-X
Derrick, B., & White, P. (2018). Methods for comparing the responses from a Likert question, with paired observations and independent observations in each of two samples. International Journal of Mathematics and Statistics, 19(3), 84–93.
Deshon, R. P., & Alexander, R. A. (1994). A generalization of James’s second-order approximation to the test for regression slope equality. Educational and Psychological Measurement, 54(2), 328–335. doi:10.1177/0013164494054002007
Digby, P. G. N. (1983). Approximating the tetrachoric correlation coefficient. Biometrics, 39(3), 753–757. doi:10.2307/2531104
Dinneen, L. C., & Blakesley, B. C. (1973). Algorithm AS 62: A generator for the sampling distribution of the Mann- Whitney U statistic. Journal of the Royal Statistical Society. Series C (Applied Statistics), 22(2), 269–273. doi:10.2307/2346934
Divgi, D. R. (1979). Calculation of univariate and bivariate normal probability functions. The Annals of Statistics, 7(4). doi:10.1214/aos/1176344739
Divgi, D. R. (1979). Calculation of the tetrachoric correlation coefficient. Psychometrika, 44(2), 169–172. doi: 10.1007/BF02293968
Doane, D. P. (1976). Aesthetic Frequency Classifications. The American Statistician, 30(4), 181–183. doi:10.2307/2683757
Donnelly, T. G. (1973). Algorithm 462: Bivariate normal distribution. Communications of the ACM, 16(10), 638. doi:10.1145/362375.362414
Drezner, Z. (1978). Computation of the bivariate normal integral. Mathematics of Computation, 32(141), 277–279. doi: 10.1090/S0025-5718-1978-0461849-9
Drezner, Z., & Wesolowsky, G. O. (1990). On the computation of the bivariate normal integral. Journal of Statistical Computation and Simulation, 35(1–2), 101–107. doi: 10.1080/00949659008811236
Dridi, C. (2003). A short note on the numerical approximation of the standard normal cumulative distribution and its inverse. Computational Economics.
Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New York, NY: Wiley.
Dudewicz, E. J., & Dalal, S. R. (1972). On approximations to the t-distribution. Journal of Quality Technology, 4(4), 196–198. doi: 10.1080/00224065.1972.11980550
Dunn, O. J. (1964). Multiple comparisons using rank sums. Technometrics, 6(3), 241–252. doi:10.1080/00401706.1964.10490181
Durlak, J. A. (2009). How to select, calculate, and interpret effect sizes. Journal of Pediatric Psychology, 34(9), 917–928. doi: 10.1093/jpepsy/jsp004
E
Edwards, A. W. F. (1963). The measure of association in a 2 × 2 table. Journal of the Royal Statistical Society. Series A (General), 126(1), 109. doi: 10.2307/2982448
Edwards, J. H. (1957). A Note on the practical interpretation of 2 x 2 tables. Journal of Epidemiology & Community Health, 11(2), 73–78. doi: 10.1136/jech.11.2.73
Eidous, O., & Al-Salman, S. (2016). One-term Approximation for normal distribution function. Mathematics and Statistics, 4(1), 15–18. doi: 10.13189/ms.2016.040102
Everitt, B. (2004). The Cambridge dictionary of statistics (2nd ed). Cambridge: Cambridge University Press.
F
Field, A. P. (2009). Discovering statistics using SPSS: (And sex, drugs and rock “n” roll) (3rd ed). Los Angeles, CA: SAGE Publications.
Fisher, R. A. (1922). On the Interpretation of χ2 from Contingency Tables, and the Calculation of P. Journal of the Royal Statistical Society, 85(1), 87–94. doi: 10.2307/2340521
Fisher, R. A. (1925). Statistical methods for research workers. Edinburgh: Oliver and Boyd.
Forbes, S. A. (1907). On the local distribution of certain Illinois fishes: An essay in statistical ecology. Illinois Natural History Survey Bulletin, 7(8), 273–303.
Freedman, D., & Diaconis, P. (1981). On the histogram as a density estimator. Zeitschrift Für Wahrscheinlichkeitstheorie Und Verwandte Gebiete, 57(4), 453–476. doi:10.1007/BF01025868
Freeman, L. C. (1965). Elementary applied statistics: for students in behavioral science. New York: Wiley.
Freeman, M. F., & Tukey, J. W. (1950). Transformations Related to the angular and the square root. The Annals of Mathematical Statistics, 21(4), 607–611. doi:10.1214/aoms/1177729756
Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance, Journal of the American Statistical Association 32(200), 675-701. doi:10.2307/2279372.
Friedman, M. (1939). A correction. Journal of the American Statistical Association 34(205),109. doi:10.1080/01621459.1939.10502372
Friendly, M. (2002). A brief history of the mosaic display. Journal of Computational and Graphical Statistics, 11(1), 89–107. doi:10.1198/106186002317375631
Fritz, C. O., Morris, P. E., & Richler, J. J. (2012). Effect size estimates: Current use, calculations, and interpretation. Journal of Experimental Psychology: General, 141(1), 2–18. doi:10.1037/a0024338
G
Games, P. A., & Howell, J. F. (1976). Pairwise multiple comparison procedures with unequal n’s and/or variances: A Monte Carlo study. Journal of Educational and Behavioral Statistics, 1(2), 113–125. doi:10.3102/10769986001002113
Gaver, D. P., & Kafadar, K. (1984). A retrievable recipe for inverse t. The American Statistician, 38(4), 308–311. doi:10.1080/00031305.1984.10483236
Gentleman, W. M., & Jenk, M. A. (1968). An approximation for Student’s t-distribution. Biometrika, 55(3), 571–572. doi:10.1093/biomet/55.3.571
Genz, A., & Bretz, F. (2009). Computation of multivariate normal and t probabilities. Springer.
Gleason, J. R. (2000). A note on a proposed student t approximation. Computational Statistics & Data Analysis, 34(1), 63–66. doi:10.1016/S0167-9473(99)00070-5
Glen_b. (2015, January 27). Post-hoc test for chi-square goodness-of-fit test. Retrieved from https://stats.stackexchange.com/q/135098
Goodman, L. A., & Kruskal, W. H. (1954). Measures of association for cross classifications. Journal of the American Statistical Association, 49(268), 732–764. doi:10.2307/2281536
Geisser, S., & Greenhouse, S. W. (1958). An extension of Box’s results on the use of the F distribution in multivariate analysis. The Annals of Mathematical Statistics, 29(3), 885–891. doi:10.1214/aoms/1177706545
Girden, E. R. (1992). ANOVA: Repeated measures. Newbury Park, CA: Sage Publications.
Greenhouse, S. W., & Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24(2), 95–112. doi:10.1007/BF02289823
H
Haighton, J., Haworth, A., & Wake, G. (2003). Statistics. Cheltenham: Nelson Thornes.
Hamaker, H. C. (1978). Approximating the cumulative normal distribution and its inverse. Applied Statistics, 27(1), 76. doi:10.2307/2346231
Hart, R. G. (1957). A formula for the approximation of definite integrals of the normal distribution function. Mathematics of Computation, 11, 265. doi:10.1090/S0025-5718-1957-0093024-0
Hart, R. G. (1966). A close approximation related to the error function. Mathematics of Computation, 20(96), 600–602. doi:10.1090/S0025-5718-1966-0203907-1
Hartigan, J. A., & Kleiner, B. (1981). Mosaics for contingency tables. In W. F. Eddy (Ed.), Proceedings of the 13th Symposium on the Interface (pp. 268–273). Springer. doi:10.1007/978-1-4613-9464-8_37
Hartung, J., Argaç, D., & Makambi, K. H. (2002). Small sample properties of tests on homogeneity in one-way anova and meta-analysis. Statistical Papers, 43(2), 197–235. doi:10.1007/s00362-002-0097-8
Hastings, C. (1955). Approximations for digital computers. Princeton University Press.
Hawkes, A. G. (1982). Approximating the normal tail. The Statistician, 31(3), 231. doi:10.2307/2987989
Hedges, L. V. (1981). Distribution Theory for Glass’s Estimator of Effect Size and Related Estimators. Journal of Educational Statistics, 6(2), 107–128. doi:10.2307/1164588
Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. Academic Press.
Herkenhoff, L., & Fogli, J. (2013). Applied statistics for business and management using Microsoft Excel. New York, NY: Springer.
Hill, I. D. (1973). Algorithm AS 66: The normal integral. Applied Statistics, 22(3), 424–427. doi:10.2307/2346800
Hill, I. D., & Joyce, S. A. (1967a). Algorithm 304: Normal curve integral. Communications of the ACM, 10(6), 374–375. doi:10.1145/363332.363411
Hill, I. D., & Joyce, S. A. (1967b). Remarks on Algorithm 123: Real error function, ERF ( x ). Communications of the ACM, 10(6), 377. doi:10.1145/363332.365432
Hill, I. D., & Joyce, S. A. (1967c). Remarks on Algorithm 180: Error function—large X. Communications of the ACM, 10(6), 377. doi:10.1145/363332.365433
Hill, I. D., & Joyce, S. A. (1967d). Remarks on Algorithm 226: Normal distribution function. Communications of the ACM, 10(6), 377. doi:10.1145/363332.365436
Hill, I. D., & Joyce, S. A. (1967e). Remarks on Algorithm 272: Procedure for the normal distribution functions. Communications of the ACM, 10(6), 377. doi:10.1145/363332.365437
Hill, G. W. (1970). Algorithm 395: Students t-distribution. Communications of the ACM, 13(10), 617–619. doi:10.1145/355598.362775
Hill, G. W. (1981). Remark on algorithm 395. ACM Transactions on Mathematical Software, 7(2), 247–249. doi:10.1145/355945.355955
Holmgren, B. (1970). Remark on algorithm 304: Normal curve integral. Communications of the ACM, 13(10), 624. doi:10.1145/355598.362784
how2stats (Director). (2018, June 11). Welch’s F-test vs Brown-Forsythe F-test: Which Should You Use and When? https://youtu.be/jteKmatBgF8
Huizingh, E. (2007). Applied statistics with SPSS. London: SAGE.
Huynh, H., & Feldt, L. S. (1976). Estimation of the box correction for degrees of freedom from sample data in randomized block and split-plot designs. Journal of Educational Statistics, 1(1), 69–82. doi:10.2307/1164736
I
Ibbetson, D. (1963a). Algorithm 209: Gauss. Communications of the ACM, 6(10), 616. doi:10.1145/367651.367664
Ibbetson, D. (1963b). Remark on algorithm 123: ERF. Communications of the ACM, 6(10), 618. doi:10.1145/367651.367671
Iman, R., & Davenport, J. (1980). Approximations of the critical region of the Friedman statistic. Communications in Statistics-Theory and Methods, 9, 571–595.
J
James, G. S. (1951). The comparison of several groups of observations when the ratios of the population variances are unknown. Biometrika, 38(3–4), 324–329. doi:10.1093/biomet/38.3-4.324
jmp. (n.d.). Mosaic Plot. Jmp: Statistics Knowledge Portal. Retrieved February 4, 2023, from https://www.jmp.com/en_us/statistics-knowledge-portal/exploratory-data-analysis/mosaic-plot.html
Johnson, N. L., & Kotz, S. (1972). Continuous multivariate distributions. Wiley.
Johnston, J. E., Berry, K. J., & Mielke, P. W. (2006). Measures of effect size for chi-squared and likelihood-ratio goodness-of-fit tests. Perceptual and Motor Skills, 103(2), 412–414. doi:10.2466/pms.103.2.412-414
Joiner. (1995). Pareto charts: Plain & simple. Joiner Associates.
JonB. (2015, October 14). Effect size of a binomial test and its relation to other measures of effect size. Retrieved from https://stats.stackexchange.com/q/176856
Jones, K. (2014, June 5). How do you interpret the odds ratio (OR)? ResearchGate. https://www.researchgate.net/post/How_do_you_interpret_the_odds_ratio_OR
K
Kader, G. D., & Perry, M. (2007). Variability for categorical variables. Journal of Statistics Education, 15(2), 1–17.
Kelley, T. L. (1935). An Unbiased Correlation Ratio Measure. Proceedings of the National Academy of Sciences of the United States of America, 21(9), 554–559.
Kelley, K., & Preacher, K. J. (2012). On effect size. Psychological Methods, 17(2), 137–152. doi:10.1037/a0028086
Kemp, S. M., & Kemp, S. (2004). Business statistics demystified. McGraw-Hill.
Kendall, M. G., & Smith, B. B. (1939). The problem of m rankings. The Annals of Mathematical Statistics, 10(3), 275–287. doi:10.1214/aoms/1177732186
Kenney, J. F. (1939). Mathematics of statistics; Part one. London: Chapman & Hall.
Kenney, J. F., & Keeping, E. S. (1954). Mathematics of statistics; Part one (3rd ed.). New York: D. Van Nostrand Company.
Kerby, D. S. (2014). The simple difference formula: An approach to teaching nonparametric correlation. Comprehensive Psychology, 3, 1–9. doi:10.2466/11.IT.3.1
Kerridge, D. F., & Cook, G. W. (1976). Yet another series for the normal integral. Biometrika, 63(2), 401–407. doi:10.1093/biomet/63.2.401
Kiani, M., Panaretos, J., Psarakis, S., & Saleem, M. (2008). Approximations to the normal distribution function and an extended table for the mean range of the normal variables. In MPRA Paper (No. 68045; MPRA Paper, pp. 57–72). University Library of Munich, Germany. https://ideas.repec.org/p/pra/mprapa/68045.html
Kieffer, K. M. (2002). On analyzing repeated measures designs with both univariate and multivariate methods: A primer with examples. Multiple Linear Regression Viewpoints, 28(1), 1–17.
King, B. M., & Minium, E. W. (2008). Statistical reasoning in the behavioral sciences (5th ed.). Hoboken, NJ. John Wiley & Sons, Inc.
Kirk, D. B. (1973). On the numerical approximation of the bivariate normal (tetrachoric) correlation coefficient. Psychometrika, 38(2), 259–268. doi:10.1007/BF02291118
Knuth, K. H. (2019). Optimal data-based binning for histograms and histogram-based probability density models. Digital Signal Processing, 95, 1–30. doi:10.1016/j.dsp.2019.102581
Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583–621. doi:10.1080/01621459.1952.10483441
L
Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4. doi:10.3389/fpsyg.2013.00863
Lakens, D. (2015, June 8). Why you should use omega-squared instead of eta-squared [blog]. Retrieved April 2, 2018, from http://daniellakens.blogspot.com
Lane, D. M. (n.d.). Histograms. In Introduction to statistics (online, pp. 82–85). Rice University. https://onlinestatbook.com/Online_Statistics_Education.pdf
Larson, R., & Farber, E. (2014). Elementary statistics: picturing the world (6th ed.). Boston: Pearson.
Levene, H. (1960). Robust tests for equality of variances. In I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow, & H. B. Mann (Eds.), Contributions to probability and statistics: Essays in honor of Harold Hotelling (pp. 278–292). Stanford University Press.
Levine, T. R., & Hullett, C. R. (2002). Eta Squared, Partial Eta Squared, and Misreporting of Effect Size in Communication Research. Human Communication Research, 28(4), 612–625. doi:10.1111/j.1468-2958.2002.tb00828.x
Lew, R. A. (1981). An approximation to the cumulative normal distribution with simple coefficients. Applied Statistics, 30(3), 299–301. doi:10.2307/2346355
Li, B., & Moor, B. D. (1999). A corrected normal approximation for the Student’s t distribution. Computational Statistics & Data Analysis, 29(2), 213–216. doi:10.1016/S0167-9473(98)00065-6
Lin, J.-T. (1988). Alternatives to Hamakers’ approximations to the cumlative normal distribution and its inverse. The Statistician, 37(4/5), 413–414. doi:10.2307/2348766
Lin, J.-T. (1989). Approximating the normal tail probability and its inverse for use on a pocket calculator. Journal of the Royal Statistical Society. Series C (Applied Statistics), 38(1), 69–70. doi:10.2307/2347681
Lin, J.-T. (1990). A simpler logistic approximation to the normal tail probability and its inverse. Applied Statistics, 39(2), 255. doi:10.2307/2347764
Lin, J.-T. (1995). A simple approximation for the bivariate normal integral. Probability in the Engineering and Informational Sciences, 9(2), 317–321. doi:10.1017/S0269964800003880
Loader, C. (2002). Fast and accurate computation of binomial probabilities.pdf. Lucent Technologies. https://www.r-project.org/doc/reports/CLoader-dbinom-2002.pdf
Lohaka, H. O. (2007). Making a Grouped-Data Frequency Table: Development and Examination of the Iteration Algorithm [Doctoral dissertation, Ohio University]. https://etd.ohiolink.edu
Lumley, T., Diehr, P., Emerson, S., & Chen, L. (2002). The importance of the normality assumption in large public health data sets. Annual Review of Public Health, 23, 151–169. doi:10.1146/annurev.publhealth.23.100901.140546
M
Mangiafico, S. S. (2016). Summary and analysis of extension program evaluation in R (1.15.0). New Brunswick, NJ: Rutger Cooperative Extension.
Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics, 18(1), 50–60. doi:10.1214/aoms/1177730491
Mann, P. S. (1991). Introductory statistics. New York: John Wiley & Sons.
Mann, P. S. (2013). Introductory statistics (8th Int.). Hoboken, N.J.: John Wiley & Sons.
Marsaglia, G. (2004). Evaluating the normal distribution. Journal of Statistical Software, 11(4). doi:10.18637/jss.v011.i04
Matić, I., Radoičić, R., & Stefanica, D. (2018). A sharp Pólya-based approximation to the normal cumulative distribution function. Applied Mathematics and Computation, 322, 111–122. doi:10.1016/j.amc.2017.10.019
Maxwell, A. E. (1970). Comparing the classification of subjects by two independent judges. The British Journal of Psychiatry, 116(535), 651–655. doi:10.1192/bjp.116.535.651
Maxwell, S. E., & Delaney, H. D. (1990). Designing experiments and analyzing data: A model comparison perspective. Belmont, CA, US: Wadsworth/Thomson Learning.
McConnell, C. R. (1990). Letters to the Editor: Pocket-computer approximation for areas under the standard normal curve. The American Statistician, 44(1), 63–63. doi:10.1080/00031305.1990.10475696
McDonald, J. H. (2014). Handbook of Biological Statistics (3rd ed.). Baltimore: Sparky House Publishing.
McDonald, J. H. (2022, April 24). Small numbers in chi-square and G–tests. Statistics LibreTexts. https://stats.libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Biological_Statistics_(McDonald)/02%3A_Tests_for_Nominal_Variables/2.08%3A_Small_Numbers_in_Chi-Square_and_GTests
McGraw, K. O., & Wong, S. P. (1992). A common language effect size statistic. Psychological Bulletin, 111(2), 361–365. doi:10.1037/0033-2909.111.2.361
McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12(2), 153–157. doi:10.1007/BF02295996
Mee, R. W., & Owen, D. B. (1983). A simple approximation for bivariate normal probabilities. Journal of Quality Technology, 15(2), 72–75. doi:10.1080/00224065.1983.11978848
Mehrotra, D. V. (1997). Improving the Brown-Forsythe solution to the generalized Behrens-Fisher problem. Communications in Statistics - Simulation and Computation, 26(3), 1139–1145. doi:10.1080/03610919708813431
Meyer, C. (2013). Recursive numerical evaluation of the cumulative bivariate normal distribution. Journal of Statistical Software, 52(10), 1–14. doi:10.18637/jss.v052.i10
Mezui-Mbeng, P. (2015). A note on Cochran test for homogeneity in two ways ANOVA and meta-analysis. Open Journal of Statistics, 5(7), 787–796. doi:10.4236/ojs.2015.57078
Michael, E. L. (1920). Marine Ecology and the coefficient of association: A plea in behalf of quantitative biology. Journal of Ecology, 8(1), 54–59. doi:10.2307/2255213
Milton, R. C., & Hotchkiss, R. (1969). Computer evaluation of the normal and inverse normal distribution functions. Technometrics, 11(4), 817–822. doi:10.1080/00401706.1969.10490740
Mood, A. M. (1950). Introduction to the theory of statistics. New York: McGraw-Hill.
Moran, P. A. P. (1980). Calculation of the normal distribution function. Biometrika, 67(3), 675–676. doi:10.1093/biomet/67.3.675
Moskowitz, H., & Tsai, H.-T. (1989). An error-bounded polynomial approximation for bivariate normal probabilities. Communications in Statistics - Simulation and Computation, 18(4), 1421–1437. doi:10.1080/03610918908812831
Myers, L. (1998). Comparability of the james’ second-order approximation test and the alexander and govern A statistic for non-normal heteroscedastic data. Journal of Statistical Computation and Simulation, 60(3), 207–222. doi:10.1080/00949659808811888
N
NCSS. (n.d.-a). Tests for one proportion. In PASS Sample Size Software (pp. 100-1-100–132). Retrieved from https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/PASS/Tests_for_One_Proportion.pdf
NCSS. (n.d.-b). Tests for two proportions using effect size. In PASS Sample Size Software (pp. 199-1-199–10). Retrieved from https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/PASS/Tests_for_Two_Proportions_using_Effect_Size.pdf
Nelson, P. R., Coffin, M., & Copeland, K. A. F. (2003). Introductory statistics for engineering experimentation. Amsterdam, NL: Elsevier Academic Press.
Neyman, J. (1949). Contribution to the theory of the chi-square test. Berkeley Symposium on Math. Stat, and Prob, 239–273. doi:10.1525/9780520327016-030
Nikoloulopoulos, A. (2020, March 23). Approximation of bivariate standard normal distribution. R Documentation. https://www.rdocumentation.org/packages/weightedScores/versions/0.9.5.3/topics/approxbvncdf
Norton, R. M. (1989). Pocket-calculator approximation for areas under the standard normal curve. The American Statistician, 43(1), 24. doi:10.2307/2685163
O
Oresme, N. (1486). Tractatus de latitudinibus formarum. (B. Pelacani da Parma, Ed.). Padua: Mathaeus Cerdonis.
Owen, D. B. (1956). Tables for computing bivariate normal probabilities. The Annals of Mathematical Statistics, 27(4), 1075–1090. doi:10.1214/aoms/1177728074
Owen, D. B. (1957). The bivariate normal probability distribution (pp. 1–136). Office of Technical Services, Department of Commerce.
Özdemir, A. F., & Kurt, S. (2006). One way fixed effect analysis of variance under variance heterogeneity and a solution proposal. Selçuk Journal of Applied Mathematics, 7(2), 81–90.
P
Page, E. (1977). Approximations to the cumulative normal function and its inverse for use on a pocket calculator. Applied Statistics, 26(1), 75. doi:10.2307/2346872
Patefield, M., & Tandy, D. (2000). Fast and accurate calculation of Owen’s T function. Journal of Statistical Software, 5(5), 1–25. doi:10.18637/jss.v005.i05
Patry, J., & Keller, J. (1964). Zur berechnung des fehlerintegrals. Numerische Mathematik, 6(1), 89–97. doi:10.1007/BF01386058
Pearson, E. S. (1947). The choice of statistical tests illustrated on the Interpretation of data classed in a 2 × 2 table. Biometrika, 34(1/2), 139–167. doi:10.2307/2332518
Pearson, K. (1895). Contributions to the mathematical theory of evolution. II. Skew variation in homogeneous material. Philosophical Transactions of the Royal Society of London. (A.), 186, 343–414. doi:10.1098/rsta.1895.0010
Pearson, K. (1896). Mathematical contributions to the theory of evolution. III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London. (A.), 1896, 253–318.
Pearson, K. (1900). Mathematical Contributions to the Theory of Evolution. VII. On the Correlation of Characters not Quantitatively Measurable. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 195, 1–405.
Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine Series 5, 50(302), 157–175. doi:10.1080/14786440009463897
Pearson, K. (1904). Contributions to the Mathematical Theory of Evolution. XIII. On the theory of contingency and its relation to association and normal correlation. London: Dulau and Co.
Peck, R., & Devore, J. L. (2012). Statistics: the exploration and analysis of data (7th ed). Boston: Brooks/Cole.
Pereira, D. G., Afonso, A., & Medeiros, F. M. (2015). Overview of Friedman’s test and post-hoc analysis. Communications in Statistics - Simulation and Computation, 44(10), 2636–2653. doi:10.1080/03610918.2014.931971
Pitts, C. E. (1971). Introduction to educational psychology: An operant conditioning approach. New York: Crowell.
Playfair, W. (1786). The commercial and political atlas. London: Debrett; Robinson; and Sewell.
Pólya, G. (1949). Remarks on computing the probability integral in one and two dimensions. Berkeley Symposium on Mathematical Statistics and Probability, 1, 63–79.
Porkess, R. (1991). The HarperCollins dictionary of statistics. New York, N.Y: HarperPerennial.
Pratt, J. W. (1959). Remarks on Zeros and Ties in the Wilcoxon Signed Rank Procedures. Journal of the American Statistical Association, 54(287), 655–667. doi:10.1080/01621459.1959.10501526
R
Raab, D. H., & Green, E. H. (1961). A cosine approximation to the normal distribution. Psychometrika, 26(4), 447–450. doi:10.1007/BF02289774
Rea, L. M., & Parker, R. A. (1992). Designing and conducting survey research: a comprehensive guide. San Francisco: Jossey-Bass Publishers.
Rice, J. A. (2006). Mathematical Statistics and Data Analysis. Belmont, CA: Cengage Learning.
Rosenthal, R. (1991). Meta-analytic procedures for social research (Rev. ed). Newbury Park: Sage Publications.
Rosnow, R. L., & Rosenthal, R. (2003). Effect sizes for experimenting psychologists. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 57(3), 221–237. doi:10.1037/h0087427
Ruxton, G. D. (2006). The unequal variance t-test is an underused alternative to Student’s t-test and the Mann–Whitney U test. Behavioral Ecology, 17(4), 688–690. doi:10.1093/beheco/ark016
S
Sawilowsky, S. (2009). New effect size rules of thumb. Theoretical and Behavioral Foundations of Education Faculty Publications, 8(2), 597–599.
Schneider, P. J., & Penfield, D. A. (1997). Alexander and Govern’s approximation: Providing an alternative to ANOVA under variance heterogeneity. The Journal of Experimental Education, 65(3), 271–286. doi:10.1080/00220973.1997.9943459
Schucany, W. R., & Gray, H. L. (1968). A new approximation related to the error function. Mathematics of Computation, 22(101), 201–202. doi:10.1090/S0025-5718-68-99887-6
Scott, A. J., & Smith, T. M. F. (1971). Interval estimates for linear combinations of means. Applied Statistics, 20(3), 276–285. doi:10.2307/2346757
Scott, D. W. (1979). On optimal and data-based histograms. Biometrika, 66(3), 605–610. doi:10.1093/biomet/66.3.605
Serlin, R. C., Carr, J., & Marascuilo, L. A. (1982). A measure of association for selected nonparametric procedures. Psychological Bulletin, 92(3), 786–790. doi:10.1037/0033-2909.92.3.786
Shah, A. K. (1985). A simpler approximation for areas under the standard normal curve. The American Statistician, 39(1), 80–80. doi:10.1080/00031305.1985.10479396
Shchigolev, V. K. (2020). A simple approximation for the normal distribution function via variational iteration method. MathLab, 6, 45–52.
Shimazaki, H., & Shinomoto, S. (2007). A Method for Selecting the Bin Size of a Time Histogram. Neural Computation, 19(6), 1503–1527. doi:10.1162/neco.2007.19.6.1503
Shore, H. (2005). Accurate RMM-based approximations for the CDF of the normal distribution. Communications in Statistics - Theory and Methods, 34(3), 507–513. doi:10.1081/STA-200052102
Simone. (2017, April 13). How do you calculate the effect size of one-sample Wilcoxon signed-rank test? Cross Validated. Retrieved December 23, 2018, from https://stats.stackexchange.com/q/234454
Singh, G. (2009). Map work and practical geography (4th ed). New Delhi: Vikas Publishing House Pvt Ltd.
Singh, D. (2013). A study on the use of non-parametric tests for experimentation with cluster analysis. International Journal of Engineering and Management Research, 3(6), 64–72.
Smits, G. J. (1981). A FORTRAN IV function to compute the probability of a standard normal deviate. Behavior Research Methods & Instrumentation, 13(5), 701–701. doi:10.3758/BF03202099
Soranzo, A., & Epure, E. (2014). Very simply explicitly invertible approximations of normal cumulative and normal quantile function. Applied Mathematical Sciences, 8, 4323–4341. doi:10.12988/ams.2014.45338
Spear, M. E. (1952). Charting statistics. McGraw-Hill.
Spearman, C. (1904). The proof and measurement of association between two things. The American Journal of Psychology, 15(1), 72–101.
Spiegel, M. R., & Stephens, L. J. (2008). Schaum’s outline of theory and problems of statistics (4th ed.). New York: McGraw-Hill.
Srivastava, T. N., & Rego, S. (2011). Business research methodology. New Delhi: Tata McGraw-Hill.
Steen, N. M., Byrne, G. D., & Gelbard, E. M. (1969). Gaussian quadratures for the integrals ₀^{∞}𝑒𝑥𝑝(-𝑥²)𝑓(𝑥)𝑑𝑥 and ₀^{𝑏}𝑒𝑥𝑝(-𝑥²)𝑓(𝑥)𝑑𝑥. Mathematics of Computation, 23(107), 661–671. doi:10.1090/S0025-5718-1969-0247744-3
Stevens, J. P. (2009). Applied multivariate statistics for the social sciences (5th ed.). New York, NY: Routledge.
Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103(2684), 677–680. doi:10.1126/science.103.2684.677
Stone, C. J. (1984). An asymptotically optimal window selection rule for kernel density estimates. The Annals of Statistics, 12(4), 1285–1297.
Strecok, A. J. (1968). On the calculation of the inverse of the error function. Mathematics of Computation, 22(101), 144–158. doi:10.2307/2004772
Stuart, A. (1955). A test for homogeneity of the marginal distributions in a two-way classification. Biometrika, 42(3/4), 412–416. doi:10.2307/2333387
Student. (1908). The probable error of a mean. Biometrika, 6(1), 1-25. doi:10.2307/2331554
Sturges, H. A. (1926). The Choice of a Class Interval. Journal of the American Statistical Association, 21(153), 65–66. doi:10.1080/01621459.1926.10502161
T
Terrell, G. R., & Scott, D. W. (1985). Oversmoothed Nonparametric Density Estimates. Journal of the American Statistical Association, 80(389), 209–214. doi:10.2307/2288074
Tastle, W. J., & Wierman, M. J. (2007). Consensus and dissention: A measure of ordinal dispersion. International Journal of Approximate Reasoning, 45(3), 531–545. doi:10.1016/j.ijar.2006.06.024
Tastle, W. J., Wierman, M. J., & Rex Dumdum, U. (2005). Ranking ordinal scales using the consensus measure. Issues in Information Systems, 6(2), 96–102.
Tchébychef, P. (1867). Des valeurs moyenne. Journal de mathématiques pures et appliquées, 12(2), 177–184.
Thacher, H. C. (1963). Algorithm 180: Error function—large X. Communications of the ACM, 6(6), 314–315. doi:10.1145/366604.366636
Tocher, K. D. (1963). The art of simulation. The English Universities Press.
Tomarken, A. J., & Serlin, R. C. (1986). Comparison of ANOVA alternatives under variance heterogeneity and specific noncentrality structures. Psychological Bulletin, 99(1), 90–99. doi:10.1037/0033-2909.99.1.90
Tomczak, M., & Tomczak, E. (2014). The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends in Sport Sciences, 1(21), 19–25.
Trawinski, B., Smetek, M., Telec, Z., & Lasota, T. (2012). Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms. International Journal of Applied Mathematics and Computer Science, 22(4). doi:10.2478/v10006-012-0064-z
Tsay, W.-J., & Ke, P.-H. (2021). A simple approximation for the bivariate normal integral. Communications in Statistics - Simulation and Computation, 1–14. doi:10.1080/03610918.2021.1884718
Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley Pub. Co.
U
Uebersax, J. (2006, August 30). McNemar tests of marginal homogeneity. Retrieved April 2, 2018, from http://www.john-uebersax.com/stat/mcnemar.htm
Upton, G. J. G., & Cook, I. (2014). Dictionary of statistics (3rd ed.). Oxford: Oxford University Press.
V
Vargha, A., & Delaney, H. D. (2000). A critique and improvement of the CL common language effect size statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics, 25(2), 101–132. doi:10.3102/10769986025002101
Vasicek, O. A. (2015). A series expansion for the bivariate normal integral. In Finance, Economics and Mathematics (pp. 297–304). John Wiley & Sons, Inc. doi:10.1002/9781119186229.ch33
Vazquez-Leal, H., Castaneda-Sheissa, R., Filobello-Nino, U., Sarmiento-Reyes, A., & Sanchez Orea, J. (2012). High accurate simple approximation of normal distribution integral. Mathematical Problems in Engineering, 2012, 1–22. doi:10.1155/2012/124029
Vedder, J. D. (1993). An invertible approximation to the normal distribution function. Computational Statistics & Data Analysis, 16(1), 119–123. doi:10.1016/0167-9473(93)90248-R
W
Waissi, G. R., & Rossin, D. F. (1996). A sigmoid approximation of the standard normal integral. Applied Mathematics and Computation, 77(1), 91–95. doi:10.1016/0096-3003(95)00190-5
Walker, F. A. (1874). Statistical Atlas of the United States Based on the Results of the Ninth Census 1870. Census Office.
Warne, R. T. (2017). Statistics for the social sciences: A general linear model approach. Cambridge, UK: Cambridge University Press.
Warner, R. M. (2012). Applied statistics: From bivariate through multivariate techniques (2nd ed.). Thousand Oaks, CA: SAGE.
Watier, N. N., Lamontagne, C., & Chartier, S. (2011). What does the mean mean? Journal of Statistics Education, 19(2), 1–20.
Weinberg, S. L., & Abramowitz, S. K. (2008). Statistics using SPSS: An integrative approach (2nd ed.). New York, NY: Cambridge University Press.
Weisstein, E. W. (2002). CRC concise encyclopedia of mathematics (2nd ed.). Boca Raton: Chapman & Hall/CRC.
Welch, B. L. (1938). The significance of the difference between two means when the population variances are unequal. Biometrika, 29(3–4), 350–362. doi:10.1093/biomet/29.3-4.350
Welch, B. L. (1947). The generalization of `Student’s’ problem when several different population variances are Involved. Biometrika, 34(1/2), 28–35. doi:10.2307/2332510
Welch, B. L. (1951). On the comparison of several mean values: An alternative approach. Biometrika, 38(3/4), 330. doi:10.2307/2332579
West, G. (2005). Better approximations to cumulative normal functions. Wilmott Magazine, 70–76. doi:10.1.1.353.1954
WhatIs.com. (n.d.). What is Pareto chart (Pareto distribution diagram)?. Retrieved April 20, 2014, from http://whatis.techtarget.com/definition/Pareto-chart-Pareto-distribution-diagram
Wijsman, R. A. (1996). New algorithms for the function T(h, a) of Owen, with application to bivariate normal and noncentral t-probabilities. Computational Statistics & Data Analysis, 21(3), 261–271. doi:10.1016/0167-9473(95)00018-6
Wikipedia. (2022). Mosaic plot. In Wikipedia. https://en.wikipedia.org/w/index.php?title=Mosaic_plot
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80. doi:10.2307/3001968
Wilkinson, L. (2005). The grammar of graphics (2nd ed). New York: Springer.
Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite hypotheses. The Annals of Mathematical Statistics, 9(1), 60–62. doi:10.1214/aoms/1177732360
Williams, D. A. (1976). Improved likelihood ratio tests for complete contingency tables. Biometrika, 63(1), 33–37. doi:10.2307/2335081
Williams, J. D. (1946). An approximation to the probability integral. The Annals of Mathematical Statistics, 17(3), 363–365. doi: 10.1214/aoms/1177730951
Winitzki, S. (2008). A handy approximation for the error function and its inverse. 1–2.
Wrenn, B., Loudon, D. L., & Stevens, R. E. (2002). Marketing research: text and cases. New York: Best Business Books.
Wright, D. B., & London, K. (2009). First (and second) steps in statistics (2nd ed.). Los Angeles, CA: SAGE.
Wuensch, K. (2009). Cohen’s conventions for small, medium, and large effects. https://imaging.mrc-cbu.cam.ac.uk/statswiki/FAQ/effectSize?action=AttachFile&do=get&target=esize.doc
X
Xue, X. (2020). Improved approximations of Hedges’ g*. doi:10.48550/arXiv.2003.06675
Y
Yates, F. (1934). Contingency tables involving small numbers and the chi square test. Supplement to the Journal of the Royal Statistical Society, 1(2), 217–235. doi:10.2307/2983604
Yerukala, R., & Boiroju, N. K. (2015). Approximations to standard normal distribution function. International Journal of Scientific & Engineering Research, 6(4), 515–518.
Yerukala, R., Boiroju, N. K., & Reddy, M. K. (2011). An approximation to the cdf of standard normal distribution. International Journal of Mathematical Archive, 2(7), 1077–1079.
Yiğit, E., & Gökpinar, F. (2010). A simulation study on tests for one-way ANOVA under the unequal variance assumption. Communications, Faculty Of Science, University of Ankara Series A1Mathematics and Statistics, 15–34. doi:10.1501/Commua1_0000000660
Young, J. C., & Minder, Ch. E. (1974). Algorithm AS 76: An integral useful in calculating non-central t and bivariate normal probabilities. Applied Statistics, 23(3), 455. doi:10.2307/2347148
Yule, G. U. (1900). On the Association of Attributes in Statistics: With Illustrations from the Material of the Childhood Society, &c. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 194, 257–319.
Yule, G. U. (1912). On the methods of measuring association between two attributes. Journal of the Royal Statistical Society, 75(6), 579–652. doi:10.2307/2340126
Yun, B.-I. (2009). Approximation to the cumulative normal distribution using hyperbolic tangent based functions. Journal of the Korean Mathematical Society, 46(6), 1267–1276. doi:10.4134/JKMS.2009.46.6.1267
Z
Zaiontz, C. (n.d.). One-sample effect size. Real Statistics Using Excel. Retrieved July 15, 2022, from https://www.real-statistics.com/students-t-distribution/one-sample-t-test/one-sample-effect-size
Zedeck, S. (Ed.). (2014). APA dictionary of statistics and research methods. Washington, DC: American Psychological Association.
Zelen, M., & Severo, N. C. (1960). Graphs for bivariate normal probabilities. The Annals of Mathematical Statistics, 31(3), 619–624. doi:10.1214/aoms/1177705789
Zelen, M., & Severo, N. C. (1970). Probability Functions. In M. Abramowitz & I. A. Stegun, Handbook of mathematical functions (9th ed., pp. 925–995). Dover.
Menu
Google adds