Module stikpetP.effect_sizes.eff_size_omega_sq
Expand source code
from ..tests.test_fisher_owa import ts_fisher_owa
def es_omega_sq(nomField, scaleField, categories=None):
'''
Omega Squared
-------------
An effect size measure for a one-way ANOVA. It indicates the the strength of the categories on the scale field. A 0 would indicate no influence, and 1 a perfect relationship.
Although a popular belief is that \\(\\omega^2\\) is preferred over \\(\\epsilon^2\\) (Keselman, 1975), a later study actually showed that \\(\\epsilon^2\\) might be preferred (Okada, 2013).
Parameters
----------
nomField : pandas series
data with categories
scaleField : pandas series
data with the scores
categories : list or dictionary, optional
the categories to use from catField
Returns
-------
om2 : float
the omega squared value
Notes
-----
The formula used (Kirk, 1996, p. 751):
$$\\omega^2 = \\frac{\\left(F - 1\\right)\\times df_b}{df_b\\times\\left(F-1\\right)+n}$$
There are quite some variations on the formula above, all giving the same final result.
Hays (1973, p. 486) and Albers and Lakens (2018, p. 194):
$$\\omega^2 = \\frac{F - 1}{\\frac{df_w + 1}{df_b} + F}$$
Caroll and Nordholm (1975, p. 547)
$$\\omega^2 = \\frac{F - 1}{\\frac{N - k + 1}{k - 1} + F}$$
Hays (1973, p. 485):
$$\\omega^2 = \\frac{SS_b - \\left(k - 1\\right)\\times MS_w}{SS_t + MS_w}$$
Olejnik and Algina (2003, p. 435):
$$\\omega^2 = \\frac{SS_b - df_b\\times MS_w}{SS_b + \\left(n - df_b\\right)\\times MS_w}$$
With:
$$MS_b = \\frac{SS_b}{df_b}$$
$$MS_w = \\frac{SS_w}{df_w}$$
$$SS_b = \\sum_{j=1}^k n_j\\times\\left(\\bar{x}_j - \\bar{x}\\right)^2$$
$$SS_w = \\sum_{j=1}^k \\sum_{i=1}^{n_j} \\left(x_{i,j} - \\bar{x}_j\\right)^2$$
$$\\bar{x}_j = \\frac{\\sum_{i=1}^{n_j} x_{i,j}}{n_j}$$
$$\\bar{x} = \\frac{\\sum_{j=1}^k n_j \\times \\bar{x}_j}{n} = \\frac{\\sum_{j=1}^k \\sum_{i=1}^{n_j} x_{i,j}}{n}$$
$$n = \\sum_{j=1}^k n_j$$
*Symbols used:*
* \\(x_{i,j}\\), the i-th score in category j
* \\(n\\), the total sample size
* \\(n_j\\), the number of scores in category j
* \\(k\\), the number of categories
* \\(\\bar{x}_j\\), the mean of the scores in category j
* \\(MS_i\\), the mean square of i
* \\(SS_i\\), the sum of squares of i (sum of squared deviation of the mean)
* \\(df_i\\), the degrees of freedom of i
* \\(b\\), is between = factor = treatment = model
* \\(w\\), is within = error (the variability within the groups)
References
----------
Albers, C., & Lakens, D. (2018). When power analyses based on pilot data are biased: Inaccurate effect size estimators and follow-up bias. *Journal of Experimental Social Psychology, 74*, 187–195. doi:10.1016/j.jesp.2017.09.004
Carroll, R. M., & Nordholm, L. A. (1975). Sampling characteristics of Kelley’s ε and Hays’ ω. *Educational and Psychological Measurement, 35*(3), 541–554. doi:10.1177/001316447503500304
Hays, W. L. (1973). *Statistics for the social sciences* (2nd ed.). Holt, Rinehart and Winston.
Keselman, H. J. (1975). A Monte Carlo investigation of three estimates of treatment magnitude: Epsilon squared, eta squared, and omega squared. *Canadian Psychological Review / Psychologie Canadienne, 16*(1), 44–48. doi:10.1037/h0081789
Kirk, R. E. (1996). Practical significance: A concept whose time has come. *Educational and Psychological Measurement, 56*(5), 746–759. doi:10.1177/0013164496056005002
Okada, K. (2013). Is omega squared less biased? A comparison of three major effect size indices in one-way anova. *Behaviormetrika, 40*(2), 129–147. doi:10.2333/bhmk.40.129
Olejnik, S., & Algina, J. (2003). Generalized eta and omega squared statistics: Measures of effect size for some common research designs. *Psychological Methods, 8*(4), 434–447. doi:10.1037/1082-989X.8.4.434
Author
------
Made by P. Stikker
Companion website: https://PeterStatistics.com
YouTube channel: https://www.youtube.com/stikpet
Donations: https://www.patreon.com/bePatron?u=19398076
'''
#Anova table
aTab = ts_fisher_owa(nomField, scaleField, categories)
f = aTab.iloc[0, 4]
dfb = aTab.iloc[0, 2]
n = aTab.iloc[2, 2] + 1
om2 = (f - 1) * dfb / (dfb * (f - 1) + n)
return om2
Functions
def es_omega_sq(nomField, scaleField, categories=None)-
Omega Squared
An effect size measure for a one-way ANOVA. It indicates the the strength of the categories on the scale field. A 0 would indicate no influence, and 1 a perfect relationship.
Although a popular belief is that \omega^2 is preferred over \epsilon^2 (Keselman, 1975), a later study actually showed that \epsilon^2 might be preferred (Okada, 2013).
Parameters
nomField:pandas series- data with categories
scaleField:pandas series- data with the scores
categories:listordictionary, optional- the categories to use from catField
Returns
om2:float- the omega squared value
Notes
The formula used (Kirk, 1996, p. 751): \omega^2 = \frac{\left(F - 1\right)\times df_b}{df_b\times\left(F-1\right)+n}
There are quite some variations on the formula above, all giving the same final result.
Hays (1973, p. 486) and Albers and Lakens (2018, p. 194): \omega^2 = \frac{F - 1}{\frac{df_w + 1}{df_b} + F}
Caroll and Nordholm (1975, p. 547) \omega^2 = \frac{F - 1}{\frac{N - k + 1}{k - 1} + F}
Hays (1973, p. 485): \omega^2 = \frac{SS_b - \left(k - 1\right)\times MS_w}{SS_t + MS_w}
Olejnik and Algina (2003, p. 435): \omega^2 = \frac{SS_b - df_b\times MS_w}{SS_b + \left(n - df_b\right)\times MS_w}
With: MS_b = \frac{SS_b}{df_b} MS_w = \frac{SS_w}{df_w} SS_b = \sum_{j=1}^k n_j\times\left(\bar{x}_j - \bar{x}\right)^2 SS_w = \sum_{j=1}^k \sum_{i=1}^{n_j} \left(x_{i,j} - \bar{x}_j\right)^2 \bar{x}_j = \frac{\sum_{i=1}^{n_j} x_{i,j}}{n_j} \bar{x} = \frac{\sum_{j=1}^k n_j \times \bar{x}_j}{n} = \frac{\sum_{j=1}^k \sum_{i=1}^{n_j} x_{i,j}}{n} n = \sum_{j=1}^k n_j
Symbols used:
- x_{i,j}, the i-th score in category j
- n, the total sample size
- n_j, the number of scores in category j
- k, the number of categories
- \bar{x}_j, the mean of the scores in category j
- MS_i, the mean square of i
- SS_i, the sum of squares of i (sum of squared deviation of the mean)
- df_i, the degrees of freedom of i
- b, is between = factor = treatment = model
- w, is within = error (the variability within the groups)
References
Albers, C., & Lakens, D. (2018). When power analyses based on pilot data are biased: Inaccurate effect size estimators and follow-up bias. Journal of Experimental Social Psychology, 74, 187–195. doi:10.1016/j.jesp.2017.09.004
Carroll, R. M., & Nordholm, L. A. (1975). Sampling characteristics of Kelley’s ε and Hays’ ω. Educational and Psychological Measurement, 35(3), 541–554. doi:10.1177/001316447503500304
Hays, W. L. (1973). Statistics for the social sciences (2nd ed.). Holt, Rinehart and Winston.
Keselman, H. J. (1975). A Monte Carlo investigation of three estimates of treatment magnitude: Epsilon squared, eta squared, and omega squared. Canadian Psychological Review / Psychologie Canadienne, 16(1), 44–48. doi:10.1037/h0081789
Kirk, R. E. (1996). Practical significance: A concept whose time has come. Educational and Psychological Measurement, 56(5), 746–759. doi:10.1177/0013164496056005002
Okada, K. (2013). Is omega squared less biased? A comparison of three major effect size indices in one-way anova. Behaviormetrika, 40(2), 129–147. doi:10.2333/bhmk.40.129
Olejnik, S., & Algina, J. (2003). Generalized eta and omega squared statistics: Measures of effect size for some common research designs. Psychological Methods, 8(4), 434–447. doi:10.1037/1082-989X.8.4.434
Author
Made by P. Stikker
Companion website: https://PeterStatistics.com
YouTube channel: https://www.youtube.com/stikpet
Donations: https://www.patreon.com/bePatron?u=19398076Expand source code
def es_omega_sq(nomField, scaleField, categories=None): ''' Omega Squared ------------- An effect size measure for a one-way ANOVA. It indicates the the strength of the categories on the scale field. A 0 would indicate no influence, and 1 a perfect relationship. Although a popular belief is that \\(\\omega^2\\) is preferred over \\(\\epsilon^2\\) (Keselman, 1975), a later study actually showed that \\(\\epsilon^2\\) might be preferred (Okada, 2013). Parameters ---------- nomField : pandas series data with categories scaleField : pandas series data with the scores categories : list or dictionary, optional the categories to use from catField Returns ------- om2 : float the omega squared value Notes ----- The formula used (Kirk, 1996, p. 751): $$\\omega^2 = \\frac{\\left(F - 1\\right)\\times df_b}{df_b\\times\\left(F-1\\right)+n}$$ There are quite some variations on the formula above, all giving the same final result. Hays (1973, p. 486) and Albers and Lakens (2018, p. 194): $$\\omega^2 = \\frac{F - 1}{\\frac{df_w + 1}{df_b} + F}$$ Caroll and Nordholm (1975, p. 547) $$\\omega^2 = \\frac{F - 1}{\\frac{N - k + 1}{k - 1} + F}$$ Hays (1973, p. 485): $$\\omega^2 = \\frac{SS_b - \\left(k - 1\\right)\\times MS_w}{SS_t + MS_w}$$ Olejnik and Algina (2003, p. 435): $$\\omega^2 = \\frac{SS_b - df_b\\times MS_w}{SS_b + \\left(n - df_b\\right)\\times MS_w}$$ With: $$MS_b = \\frac{SS_b}{df_b}$$ $$MS_w = \\frac{SS_w}{df_w}$$ $$SS_b = \\sum_{j=1}^k n_j\\times\\left(\\bar{x}_j - \\bar{x}\\right)^2$$ $$SS_w = \\sum_{j=1}^k \\sum_{i=1}^{n_j} \\left(x_{i,j} - \\bar{x}_j\\right)^2$$ $$\\bar{x}_j = \\frac{\\sum_{i=1}^{n_j} x_{i,j}}{n_j}$$ $$\\bar{x} = \\frac{\\sum_{j=1}^k n_j \\times \\bar{x}_j}{n} = \\frac{\\sum_{j=1}^k \\sum_{i=1}^{n_j} x_{i,j}}{n}$$ $$n = \\sum_{j=1}^k n_j$$ *Symbols used:* * \\(x_{i,j}\\), the i-th score in category j * \\(n\\), the total sample size * \\(n_j\\), the number of scores in category j * \\(k\\), the number of categories * \\(\\bar{x}_j\\), the mean of the scores in category j * \\(MS_i\\), the mean square of i * \\(SS_i\\), the sum of squares of i (sum of squared deviation of the mean) * \\(df_i\\), the degrees of freedom of i * \\(b\\), is between = factor = treatment = model * \\(w\\), is within = error (the variability within the groups) References ---------- Albers, C., & Lakens, D. (2018). When power analyses based on pilot data are biased: Inaccurate effect size estimators and follow-up bias. *Journal of Experimental Social Psychology, 74*, 187–195. doi:10.1016/j.jesp.2017.09.004 Carroll, R. M., & Nordholm, L. A. (1975). Sampling characteristics of Kelley’s ε and Hays’ ω. *Educational and Psychological Measurement, 35*(3), 541–554. doi:10.1177/001316447503500304 Hays, W. L. (1973). *Statistics for the social sciences* (2nd ed.). Holt, Rinehart and Winston. Keselman, H. J. (1975). A Monte Carlo investigation of three estimates of treatment magnitude: Epsilon squared, eta squared, and omega squared. *Canadian Psychological Review / Psychologie Canadienne, 16*(1), 44–48. doi:10.1037/h0081789 Kirk, R. E. (1996). Practical significance: A concept whose time has come. *Educational and Psychological Measurement, 56*(5), 746–759. doi:10.1177/0013164496056005002 Okada, K. (2013). Is omega squared less biased? A comparison of three major effect size indices in one-way anova. *Behaviormetrika, 40*(2), 129–147. doi:10.2333/bhmk.40.129 Olejnik, S., & Algina, J. (2003). Generalized eta and omega squared statistics: Measures of effect size for some common research designs. *Psychological Methods, 8*(4), 434–447. doi:10.1037/1082-989X.8.4.434 Author ------ Made by P. Stikker Companion website: https://PeterStatistics.com YouTube channel: https://www.youtube.com/stikpet Donations: https://www.patreon.com/bePatron?u=19398076 ''' #Anova table aTab = ts_fisher_owa(nomField, scaleField, categories) f = aTab.iloc[0, 4] dfb = aTab.iloc[0, 2] n = aTab.iloc[2, 2] + 1 om2 = (f - 1) * dfb / (dfb * (f - 1) + n) return om2