Module stikpetP.other.thumb_pearson_r
Expand source code
import pandas as pd
def th_pearson_r(r, qual="bartz"):
'''
Rules of Thumb for Pearson Correlation Coefficient
--------------------------------------------------
This function will give a qualification (classification) to a given correlation coefficient
Parameters
----------
r : the correlation coefficient
qual : {"bartz", "agnes", "brydges", "cohen", "disha", "funder", "hopkins", "lovakov", "rafter", "rea", "rosenthal", "rumsey", "gignac", "hemphill"}, optional
the rule of thumb to be used. Default is "bartz".
Returns
-------
pandas.DataFrame
A dataframe with the following columns:
* *classification*, the qualification of the effect size
* *reference*, a reference for the rule of thumb used
Notes
-----
The following rules-of-thumb can be used:
"agnes" => Agnes (2011)
|\\|r\\|| Interpretation|
|---|----------|
|0.00 < 0.20 | negligible |
|0.20 < 0.40 | low |
|0.40 < 0.60 | moderate |
|0.60 < 0.80 | marked |
|0.80 or more | high |
"bartz" => Bartz (1988, p. 199)
|\\|r\\|| Interpretation|
|---|----------|
|0.00 < 0.20 | very low |
|0.20 < 0.40 | low |
|0.40 < 0.60 | moderate |
|0.60 < 0.80 | strong |
|0.80 or more | very high |
"brydges" => Brydges (2019, p. 5) =
"gignac" => Gignac and Szodorai (2016, p. 75) =
"hemphill" => Hemphill (2003, p. 78)
|\\|r\\|| Interpretation|
|---|----------|
|0.00 < 0.10 | negligible |
|0.10 < 0.20 | small |
|0.20 < 0.30 | medium |
|0.30 or more | large |
"cohen" => Cohen (1988, p. 82)
|\\|r\\|| Interpretation|
|---|----------|
|0.00 < 0.20 | negligible |
|0.20 < 0.50 | small |
|0.50 < 0.80 | medium |
|0.80 or more | large |
"disha" => Disha (2016)
|\\|r\\|| Interpretation|
|---|----------|
|0.00 < 0.10 | markedly low and negligible |
|0.10 < 0.30 | very low |
|0.30 < 0.50 | low |
|0.50 < 0.70 | moderate |
|0.70 < 0.90 | high |
|0.90 or more | very high |
"funder" => Funder and Ozer (2019, p. 166)
|\\|r\\|| Interpretation|
|---|----------|
|0.00 < 0.05 | negligible |
|0.05 < 0.10 | very small |
|0.10 < 0.20 | small |
|0.20 < 0.30 | medium |
|0.30 < 0.40 | large |
|0.40 or more | very large |
"hopkins" => Hopkins (1997, as cited in Warmbrod 2001)
|\\|r\\|| Interpretation|
|---|----------|
|0.00 < 0.10 | trivial |
|0.10 < 0.30 | low |
|0.30 < 0.50 | moderate |
|0.50 < 0.70 | high |
|0.70 < 0.90 | very large |
|0.90 or more | nearly perfect |
"lovakov" => Lovakov and Agadullina (2021, p. 514)
|\\|r\\|| Interpretation|
|---|----------|
|0.00 < 0.12 | negligible |
|0.12 < 0.24 | small |
|0.24 < 0.41 | medium |
|0.41 or more | large |
"rafter" => Rafter et al. (2003, p. 194)
|\\|r\\|| Interpretation|
|---|----------|
|0.00 < 0.25 | weak |
|0.25 < 0.75 | moderate |
|0.75 or more | strong |
"rea" => Rea and Parker (2014, pp. 229, 271)
|\\|r\\|| Interpretation|
|---|----------|
|0.00 < 0.10 | negligible |
|0.10 < 0.30 | low |
|0.30 < 0.60 | moderate |
|0.60 < 0.75 | strong |
|0.75 or more | very strong |
"rosenthal" => Rosenthal (1996, p. 45)
|\\|r\\|| Interpretation|
|---|----------|
|0.00 < 0.10 | negligible |
|0.10 < 0.30 | small |
|0.30 < 0.50 | medium |
|0.50 < 0.70 | large |
|0.70 or more | very large |
"rumsey" => Rumsey (2011, p. 284)
|\\|r\\|| Interpretation|
|---|----------|
|0.00 < 0.30 | negligible |
|0.30 < 0.50 | weak |
|0.50 < 0.70 | moderate |
|0.70 or more | strong |
See Also
--------
Before using this function you need to obtain a Cramer v value:
* [r_rosenthal](../correlations/cor_rosenthal.html#r_rosenthal) to determine a Rosenthal correlation coefficient
References
----------
Agnes. (2011, April 16). Correlation – Correlation coefficient, r. Finance Training Course. https://financetrainingcourse.com/education/2011/04/correlation-correlation-coefficient-r/
Bartz, A. E. (1988). *Basic statistical concepts* (3rd ed.). Macmillan.
Brydges, C. R. (2019). Effect size guidelines, sample size calculations, and statistical power in gerontology. *Innovation in Aging, 3*(4), 1–8. doi:10.1093/geroni/igz036
Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). L. Erlbaum Associates.
Disha, M. (2016, November 3). Correlation: Meaning, types and its computation. Your Article Library. https://www.yourarticlelibrary.com/statistics-2/correlation-meaning-types-and-its-computation-statistics/92001
Funder, D. C., & Ozer, D. J. (2019). Evaluating effect size in psychological research: Sense and nonsense. *Advances in Methods and Practices in Psychological Science, 2*(2), 156–168. doi:10.1177/2515245919847202
Gignac, G. E., & Szodorai, E. T. (2016). Effect size guidelines for individual differences researchers. *Personality and Individual Differences, 102*, 74–78. doi:10.1016/j.paid.2016.06.069
Hemphill, J. F. (2003). Interpreting the magnitudes of correlation coefficients. *American Psychologist, 58*(1), 78–79. doi:10.1037/0003-066X.58.1.78
Hopkins, W. G. (2006, August 7). New view of statistics: Effect magnitudes. http://www.sportsci.org/resource/stats/effectmag.html
Lovakov, A., & Agadullina, E. R. (2021). Empirically derived guidelines for effect size interpretation in social psychology. *European Journal of Social Psychology, 51*(3), 485–504. doi:10.1002/ejsp.2752
Rafter, J. A., Abell, M. L., & Braselton, J. P. (2003). *Statistics with Maple*. Academic Press.
Rea, L. M., & Parker, R. A. (2014). *Designing and conducting survey research: A comprehensive guide* (4th ed.). Jossey-Bass, a Wiley brand.
Rosenthal, J. A. (1996). Qualitative descriptors of strength of association and effect size. *Journal of Social Service Research, 21*(4), 37–59. doi:10.1300/J079v21n04_02
Rumsey, D. J. (2011). *Statistics for dummies* (2nd ed.). Wiley.
Author
------
Made by P. Stikker
Companion website: https://PeterStatistics.com
YouTube channel: https://www.youtube.com/stikpet
Donations: https://www.patreon.com/bePatron?u=19398076
Examples
--------
>>> es = 0.6
>>> th_pearson_r(es)
classification reference
0 strong Bartz (1988, p. 199)
'''
# Agnes (2011).
if (qual=="agnes"):
ref = "Agnes (2011)"
if (abs(r) < 0.2):
qual = "negligable"
elif (abs(r) < 0.4):
qual = "low"
elif (abs(r) < 0.6):
qual = "moderate"
elif (abs(r) < 0.8):
qual = "marked"
else:
qual = "high"
# Bartz (1988, p. 199).
elif (qual=="bartz"):
ref = "Bartz (1988, p. 199)"
if (abs(r) < 0.2):
qual = "very low"
elif (abs(r) < 0.4):
qual = "low"
elif (abs(r) < 0.6):
qual = "moderate"
elif (abs(r) < 0.8):
qual = "strong"
else:
qual = "very high"
# Brydges (2019, p. 5); Gignac and Szodorai (2016, p. 75); Hemphill (2003, p. 78).
elif (qual=="gignac" or qual=="hemphill" or qual=="brydges"):
ref = "Brydges (2019, p. 5); Gignac and Szodorai (2016, p. 75); Hemphill (2003, p. 78)"
if (abs(r) < 0.1):
qual = "negligable"
elif (abs(r) < 0.2):
qual = "small"
elif (abs(r) < 0.3):
qual = "medium"
else:
qual = "large"
# Cohen (1988, p. 82).
elif (qual=="cohen"):
ref = "Cohen (1988, p. 82)"
if (abs(r) < 0.1):
qual = "negligable"
elif (abs(r) < 0.3):
qual = "small"
elif (abs(r) < 0.5):
qual = "medium"
else:
qual = "large"
# Disha (2016).
elif (qual=="disha"):
ref = "Disha (2016)"
if (abs(r) < 0.1):
qual = "markedly low and negligible"
elif (abs(r) < 0.3):
qual = "very low"
elif (abs(r) < 0.5):
qual = "low"
elif (abs(r) < 0.7):
qual = "moderate"
elif (abs(r) < 0.9):
qual = "high"
else:
qual = "very high"
# Funder and Ozer (2019, p. 166).
elif (qual=="funder"):
ref = "Funder and Ozer (2019, p. 166)"
if (abs(r) < 0.05):
qual = "negligable"
elif (abs(r) < 0.1):
qual = "very small"
elif (abs(r) < 0.2):
qual = "small"
elif (abs(r) < 0.3):
qual = "medium"
elif (abs(r) < 0.4):
qual = "large"
else:
qual = "very large"
# Hopkins (2006, tbl. 1)
elif (qual=="hopkins"):
ref = "Hopkins (2006, tbl. 1)"
if (abs(r) < 0.1):
qual = "trivial"
elif (abs(r) < 0.3):
qual = "low"
elif (abs(r) < 0.5):
qual = "moderate"
elif (abs(r) < 0.7):
qual = "high"
elif (abs(r) < 0.9):
qual = "very large"
else:
qual = "nearly perfect"
#Lovakov and Agadullina (2021, p. 514).
elif (qual=="lovakov"):
ref = "Lovakov and Agadullina (2021, p. 514)"
if (abs(r) < 0.12):
qual = "negligable"
elif (abs(r) < 0.24):
qual = "small"
elif (abs(r) < 0.41):
qual = "medium"
else:
qual = "large"
# Rafter et al. (2003, p. 194).
elif (qual=="rafter"):
ref = "Rafter et al. (2003, p. 194)"
if (abs(r) < 0.25):
qual = "weak"
elif (abs(r) < 0.75):
qual = "moderate"
else:
qual = "strong"
# Rea and Parker (2014, pp. 229, 271)
elif (qual=="rea"):
ref = "Rea and Parker (2014, pp. 229, 271)"
if (abs(r) < 0.1):
qual = "negligable"
elif (abs(r) < 0.3):
qual = "low"
elif (abs(r) < 0.6):
qual = "moderate"
elif (abs(r) < 0.75):
qual = "strong"
else:
qual = "very strong"
# Rosenthal (1996, p. 45).
elif (qual=="rosenthal"):
ref = "Rosenthal (1996, p. 45)"
if (abs(r) < 0.1):
qual = "negligable"
elif (abs(r) < 0.3):
qual = "small"
elif (abs(r) < 0.5):
qual = "medium"
elif (abs(r) < 0.7):
qual = "large"
else:
qual = "very large"
# Rumsey (2011, p. 284).
elif (qual=="rumsey"):
ref = "Rumsey (2011, p. 284)"
if (abs(r) < 0.3):
qual = "negligable"
elif (abs(r) < 0.5):
qual = "weak"
elif (abs(r) < 0.7):
qual = "moderate"
else:
qual = "strong"
results = pd.DataFrame([[qual, ref]], columns=["classification", "reference"])
return results
Functions
def th_pearson_r(r, qual='bartz')-
Rules Of Thumb For Pearson Correlation Coefficient
This function will give a qualification (classification) to a given correlation coefficient
Parameters
r:the correlation coefficientqual:{"bartz", "agnes", "brydges", "cohen", "disha", "funder", "hopkins", "lovakov", "rafter", "rea", "rosenthal", "rumsey", "gignac", "hemphill"}, optional- the rule of thumb to be used. Default is "bartz".
Returns
pandas.DataFrame-
A dataframe with the following columns:
- classification, the qualification of the effect size
- reference, a reference for the rule of thumb used
Notes
The following rules-of-thumb can be used:
"agnes" => Agnes (2011)
|r| Interpretation 0.00 < 0.20 negligible 0.20 < 0.40 low 0.40 < 0.60 moderate 0.60 < 0.80 marked 0.80 or more high "bartz" => Bartz (1988, p. 199)
|r| Interpretation 0.00 < 0.20 very low 0.20 < 0.40 low 0.40 < 0.60 moderate 0.60 < 0.80 strong 0.80 or more very high "brydges" => Brydges (2019, p. 5) = "gignac" => Gignac and Szodorai (2016, p. 75) = "hemphill" => Hemphill (2003, p. 78)
|r| Interpretation 0.00 < 0.10 negligible 0.10 < 0.20 small 0.20 < 0.30 medium 0.30 or more large "cohen" => Cohen (1988, p. 82)
|r| Interpretation 0.00 < 0.20 negligible 0.20 < 0.50 small 0.50 < 0.80 medium 0.80 or more large "disha" => Disha (2016)
|r| Interpretation 0.00 < 0.10 markedly low and negligible 0.10 < 0.30 very low 0.30 < 0.50 low 0.50 < 0.70 moderate 0.70 < 0.90 high 0.90 or more very high "funder" => Funder and Ozer (2019, p. 166)
|r| Interpretation 0.00 < 0.05 negligible 0.05 < 0.10 very small 0.10 < 0.20 small 0.20 < 0.30 medium 0.30 < 0.40 large 0.40 or more very large "hopkins" => Hopkins (1997, as cited in Warmbrod 2001)
|r| Interpretation 0.00 < 0.10 trivial 0.10 < 0.30 low 0.30 < 0.50 moderate 0.50 < 0.70 high 0.70 < 0.90 very large 0.90 or more nearly perfect "lovakov" => Lovakov and Agadullina (2021, p. 514)
|r| Interpretation 0.00 < 0.12 negligible 0.12 < 0.24 small 0.24 < 0.41 medium 0.41 or more large "rafter" => Rafter et al. (2003, p. 194)
|r| Interpretation 0.00 < 0.25 weak 0.25 < 0.75 moderate 0.75 or more strong "rea" => Rea and Parker (2014, pp. 229, 271)
|r| Interpretation 0.00 < 0.10 negligible 0.10 < 0.30 low 0.30 < 0.60 moderate 0.60 < 0.75 strong 0.75 or more very strong "rosenthal" => Rosenthal (1996, p. 45)
|r| Interpretation 0.00 < 0.10 negligible 0.10 < 0.30 small 0.30 < 0.50 medium 0.50 < 0.70 large 0.70 or more very large "rumsey" => Rumsey (2011, p. 284)
|r| Interpretation 0.00 < 0.30 negligible 0.30 < 0.50 weak 0.50 < 0.70 moderate 0.70 or more strong See Also
Before using this function you need to obtain a Cramer v value:* [r_rosenthal](../correlations/cor_rosenthal.html#r_rosenthal) to determine a Rosenthal correlation coefficientReferences
Agnes. (2011, April 16). Correlation – Correlation coefficient, r. Finance Training Course. https://financetrainingcourse.com/education/2011/04/correlation-correlation-coefficient-r/
Bartz, A. E. (1988). Basic statistical concepts (3rd ed.). Macmillan.
Brydges, C. R. (2019). Effect size guidelines, sample size calculations, and statistical power in gerontology. Innovation in Aging, 3(4), 1–8. doi:10.1093/geroni/igz036
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum Associates.
Disha, M. (2016, November 3). Correlation: Meaning, types and its computation. Your Article Library. https://www.yourarticlelibrary.com/statistics-2/correlation-meaning-types-and-its-computation-statistics/92001
Funder, D. C., & Ozer, D. J. (2019). Evaluating effect size in psychological research: Sense and nonsense. Advances in Methods and Practices in Psychological Science, 2(2), 156–168. doi:10.1177/2515245919847202
Gignac, G. E., & Szodorai, E. T. (2016). Effect size guidelines for individual differences researchers. Personality and Individual Differences, 102, 74–78. doi:10.1016/j.paid.2016.06.069
Hemphill, J. F. (2003). Interpreting the magnitudes of correlation coefficients. American Psychologist, 58(1), 78–79. doi:10.1037/0003-066X.58.1.78
Hopkins, W. G. (2006, August 7). New view of statistics: Effect magnitudes. http://www.sportsci.org/resource/stats/effectmag.html
Lovakov, A., & Agadullina, E. R. (2021). Empirically derived guidelines for effect size interpretation in social psychology. European Journal of Social Psychology, 51(3), 485–504. doi:10.1002/ejsp.2752
Rafter, J. A., Abell, M. L., & Braselton, J. P. (2003). Statistics with Maple. Academic Press.
Rea, L. M., & Parker, R. A. (2014). Designing and conducting survey research: A comprehensive guide (4th ed.). Jossey-Bass, a Wiley brand.
Rosenthal, J. A. (1996). Qualitative descriptors of strength of association and effect size. Journal of Social Service Research, 21(4), 37–59. doi:10.1300/J079v21n04_02
Rumsey, D. J. (2011). Statistics for dummies (2nd ed.). Wiley.
Author
Made by P. Stikker
Companion website: https://PeterStatistics.com
YouTube channel: https://www.youtube.com/stikpet
Donations: https://www.patreon.com/bePatron?u=19398076Examples
>>> es = 0.6 >>> th_pearson_r(es) classification reference 0 strong Bartz (1988, p. 199)Expand source code
def th_pearson_r(r, qual="bartz"): ''' Rules of Thumb for Pearson Correlation Coefficient -------------------------------------------------- This function will give a qualification (classification) to a given correlation coefficient Parameters ---------- r : the correlation coefficient qual : {"bartz", "agnes", "brydges", "cohen", "disha", "funder", "hopkins", "lovakov", "rafter", "rea", "rosenthal", "rumsey", "gignac", "hemphill"}, optional the rule of thumb to be used. Default is "bartz". Returns ------- pandas.DataFrame A dataframe with the following columns: * *classification*, the qualification of the effect size * *reference*, a reference for the rule of thumb used Notes ----- The following rules-of-thumb can be used: "agnes" => Agnes (2011) |\\|r\\|| Interpretation| |---|----------| |0.00 < 0.20 | negligible | |0.20 < 0.40 | low | |0.40 < 0.60 | moderate | |0.60 < 0.80 | marked | |0.80 or more | high | "bartz" => Bartz (1988, p. 199) |\\|r\\|| Interpretation| |---|----------| |0.00 < 0.20 | very low | |0.20 < 0.40 | low | |0.40 < 0.60 | moderate | |0.60 < 0.80 | strong | |0.80 or more | very high | "brydges" => Brydges (2019, p. 5) = "gignac" => Gignac and Szodorai (2016, p. 75) = "hemphill" => Hemphill (2003, p. 78) |\\|r\\|| Interpretation| |---|----------| |0.00 < 0.10 | negligible | |0.10 < 0.20 | small | |0.20 < 0.30 | medium | |0.30 or more | large | "cohen" => Cohen (1988, p. 82) |\\|r\\|| Interpretation| |---|----------| |0.00 < 0.20 | negligible | |0.20 < 0.50 | small | |0.50 < 0.80 | medium | |0.80 or more | large | "disha" => Disha (2016) |\\|r\\|| Interpretation| |---|----------| |0.00 < 0.10 | markedly low and negligible | |0.10 < 0.30 | very low | |0.30 < 0.50 | low | |0.50 < 0.70 | moderate | |0.70 < 0.90 | high | |0.90 or more | very high | "funder" => Funder and Ozer (2019, p. 166) |\\|r\\|| Interpretation| |---|----------| |0.00 < 0.05 | negligible | |0.05 < 0.10 | very small | |0.10 < 0.20 | small | |0.20 < 0.30 | medium | |0.30 < 0.40 | large | |0.40 or more | very large | "hopkins" => Hopkins (1997, as cited in Warmbrod 2001) |\\|r\\|| Interpretation| |---|----------| |0.00 < 0.10 | trivial | |0.10 < 0.30 | low | |0.30 < 0.50 | moderate | |0.50 < 0.70 | high | |0.70 < 0.90 | very large | |0.90 or more | nearly perfect | "lovakov" => Lovakov and Agadullina (2021, p. 514) |\\|r\\|| Interpretation| |---|----------| |0.00 < 0.12 | negligible | |0.12 < 0.24 | small | |0.24 < 0.41 | medium | |0.41 or more | large | "rafter" => Rafter et al. (2003, p. 194) |\\|r\\|| Interpretation| |---|----------| |0.00 < 0.25 | weak | |0.25 < 0.75 | moderate | |0.75 or more | strong | "rea" => Rea and Parker (2014, pp. 229, 271) |\\|r\\|| Interpretation| |---|----------| |0.00 < 0.10 | negligible | |0.10 < 0.30 | low | |0.30 < 0.60 | moderate | |0.60 < 0.75 | strong | |0.75 or more | very strong | "rosenthal" => Rosenthal (1996, p. 45) |\\|r\\|| Interpretation| |---|----------| |0.00 < 0.10 | negligible | |0.10 < 0.30 | small | |0.30 < 0.50 | medium | |0.50 < 0.70 | large | |0.70 or more | very large | "rumsey" => Rumsey (2011, p. 284) |\\|r\\|| Interpretation| |---|----------| |0.00 < 0.30 | negligible | |0.30 < 0.50 | weak | |0.50 < 0.70 | moderate | |0.70 or more | strong | See Also -------- Before using this function you need to obtain a Cramer v value: * [r_rosenthal](../correlations/cor_rosenthal.html#r_rosenthal) to determine a Rosenthal correlation coefficient References ---------- Agnes. (2011, April 16). Correlation – Correlation coefficient, r. Finance Training Course. https://financetrainingcourse.com/education/2011/04/correlation-correlation-coefficient-r/ Bartz, A. E. (1988). *Basic statistical concepts* (3rd ed.). Macmillan. Brydges, C. R. (2019). Effect size guidelines, sample size calculations, and statistical power in gerontology. *Innovation in Aging, 3*(4), 1–8. doi:10.1093/geroni/igz036 Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). L. Erlbaum Associates. Disha, M. (2016, November 3). Correlation: Meaning, types and its computation. Your Article Library. https://www.yourarticlelibrary.com/statistics-2/correlation-meaning-types-and-its-computation-statistics/92001 Funder, D. C., & Ozer, D. J. (2019). Evaluating effect size in psychological research: Sense and nonsense. *Advances in Methods and Practices in Psychological Science, 2*(2), 156–168. doi:10.1177/2515245919847202 Gignac, G. E., & Szodorai, E. T. (2016). Effect size guidelines for individual differences researchers. *Personality and Individual Differences, 102*, 74–78. doi:10.1016/j.paid.2016.06.069 Hemphill, J. F. (2003). Interpreting the magnitudes of correlation coefficients. *American Psychologist, 58*(1), 78–79. doi:10.1037/0003-066X.58.1.78 Hopkins, W. G. (2006, August 7). New view of statistics: Effect magnitudes. http://www.sportsci.org/resource/stats/effectmag.html Lovakov, A., & Agadullina, E. R. (2021). Empirically derived guidelines for effect size interpretation in social psychology. *European Journal of Social Psychology, 51*(3), 485–504. doi:10.1002/ejsp.2752 Rafter, J. A., Abell, M. L., & Braselton, J. P. (2003). *Statistics with Maple*. Academic Press. Rea, L. M., & Parker, R. A. (2014). *Designing and conducting survey research: A comprehensive guide* (4th ed.). Jossey-Bass, a Wiley brand. Rosenthal, J. A. (1996). Qualitative descriptors of strength of association and effect size. *Journal of Social Service Research, 21*(4), 37–59. doi:10.1300/J079v21n04_02 Rumsey, D. J. (2011). *Statistics for dummies* (2nd ed.). Wiley. Author ------ Made by P. Stikker Companion website: https://PeterStatistics.com YouTube channel: https://www.youtube.com/stikpet Donations: https://www.patreon.com/bePatron?u=19398076 Examples -------- >>> es = 0.6 >>> th_pearson_r(es) classification reference 0 strong Bartz (1988, p. 199) ''' # Agnes (2011). if (qual=="agnes"): ref = "Agnes (2011)" if (abs(r) < 0.2): qual = "negligable" elif (abs(r) < 0.4): qual = "low" elif (abs(r) < 0.6): qual = "moderate" elif (abs(r) < 0.8): qual = "marked" else: qual = "high" # Bartz (1988, p. 199). elif (qual=="bartz"): ref = "Bartz (1988, p. 199)" if (abs(r) < 0.2): qual = "very low" elif (abs(r) < 0.4): qual = "low" elif (abs(r) < 0.6): qual = "moderate" elif (abs(r) < 0.8): qual = "strong" else: qual = "very high" # Brydges (2019, p. 5); Gignac and Szodorai (2016, p. 75); Hemphill (2003, p. 78). elif (qual=="gignac" or qual=="hemphill" or qual=="brydges"): ref = "Brydges (2019, p. 5); Gignac and Szodorai (2016, p. 75); Hemphill (2003, p. 78)" if (abs(r) < 0.1): qual = "negligable" elif (abs(r) < 0.2): qual = "small" elif (abs(r) < 0.3): qual = "medium" else: qual = "large" # Cohen (1988, p. 82). elif (qual=="cohen"): ref = "Cohen (1988, p. 82)" if (abs(r) < 0.1): qual = "negligable" elif (abs(r) < 0.3): qual = "small" elif (abs(r) < 0.5): qual = "medium" else: qual = "large" # Disha (2016). elif (qual=="disha"): ref = "Disha (2016)" if (abs(r) < 0.1): qual = "markedly low and negligible" elif (abs(r) < 0.3): qual = "very low" elif (abs(r) < 0.5): qual = "low" elif (abs(r) < 0.7): qual = "moderate" elif (abs(r) < 0.9): qual = "high" else: qual = "very high" # Funder and Ozer (2019, p. 166). elif (qual=="funder"): ref = "Funder and Ozer (2019, p. 166)" if (abs(r) < 0.05): qual = "negligable" elif (abs(r) < 0.1): qual = "very small" elif (abs(r) < 0.2): qual = "small" elif (abs(r) < 0.3): qual = "medium" elif (abs(r) < 0.4): qual = "large" else: qual = "very large" # Hopkins (2006, tbl. 1) elif (qual=="hopkins"): ref = "Hopkins (2006, tbl. 1)" if (abs(r) < 0.1): qual = "trivial" elif (abs(r) < 0.3): qual = "low" elif (abs(r) < 0.5): qual = "moderate" elif (abs(r) < 0.7): qual = "high" elif (abs(r) < 0.9): qual = "very large" else: qual = "nearly perfect" #Lovakov and Agadullina (2021, p. 514). elif (qual=="lovakov"): ref = "Lovakov and Agadullina (2021, p. 514)" if (abs(r) < 0.12): qual = "negligable" elif (abs(r) < 0.24): qual = "small" elif (abs(r) < 0.41): qual = "medium" else: qual = "large" # Rafter et al. (2003, p. 194). elif (qual=="rafter"): ref = "Rafter et al. (2003, p. 194)" if (abs(r) < 0.25): qual = "weak" elif (abs(r) < 0.75): qual = "moderate" else: qual = "strong" # Rea and Parker (2014, pp. 229, 271) elif (qual=="rea"): ref = "Rea and Parker (2014, pp. 229, 271)" if (abs(r) < 0.1): qual = "negligable" elif (abs(r) < 0.3): qual = "low" elif (abs(r) < 0.6): qual = "moderate" elif (abs(r) < 0.75): qual = "strong" else: qual = "very strong" # Rosenthal (1996, p. 45). elif (qual=="rosenthal"): ref = "Rosenthal (1996, p. 45)" if (abs(r) < 0.1): qual = "negligable" elif (abs(r) < 0.3): qual = "small" elif (abs(r) < 0.5): qual = "medium" elif (abs(r) < 0.7): qual = "large" else: qual = "very large" # Rumsey (2011, p. 284). elif (qual=="rumsey"): ref = "Rumsey (2011, p. 284)" if (abs(r) < 0.3): qual = "negligable" elif (abs(r) < 0.5): qual = "weak" elif (abs(r) < 0.7): qual = "moderate" else: qual = "strong" results = pd.DataFrame([[qual, ref]], columns=["classification", "reference"]) return results