Module stikpetP.other.thumb_rank_biserial
Expand source code
import pandas as pd
from ..effect_sizes.convert_es import es_convert
from ..other.thumb_cohen_d import th_cohen_d
def th_rank_biserial(rb, qual="cohen"):
'''
Rule of thumb for Rank Biserial Correlation
--------------------------
Simple function to use a rule-of-thumb for the Rank Biserial Correlation.
This function is shown in this [YouTube video](https://youtu.be/Tx4wJxuh5AM) and the measure is also described at [PeterStatistics.com](https://peterstatistics.com/Terms/Correlations/RankBiserialCorrelation.html)
Parameters
----------
rb : float
the rank-biserial correlation value
qual : {"cohen", "vd", "sawilowsky", "cohen-conv", "lovakov", "rosenthal", "brydges"}, optional
indication which set of rule-of-thumb to use.
Returns
-------
pandas.DataFrame
A dataframe with the following columns:
* *classification*, the qualification of the effect size
* *reference*, a reference for the rule of thumb used
Notes
-----
Cohen's rule of thumb for rank biserial (1988, p. 82):
|\\|r_b\\|| Interpretation|
|---|----------|
|0.00 < 0.125 | negligible |
|0.125 < 0.304 | small |
|0.304 < 0.465 | medium |
|0.465 or more | large |
Vargha and Delaney (2000, p. 106):
|\\|r_b\\|| Interpretation|
|---|----------|
|0.00 < 0.11 | negligible |
|0.11 < 0.28 | small |
|0.28 < 0.43 | medium |
|0.43 or more | large |
Other options are available by converting the rank biserial to Cohen d.
Before, After and Alternatives
------------------------------
Before this you might want to obtain the measure:
* [r_rank_biserial_os](../correlations/cor_rank_biserial_os.html#r_rank_biserial_os) to determine a the rank biserial for one-sample
* [r_rank_biserial_is](../correlations/r_rank_biserial_is.html#r_rank_biserial_is) to determine a the rank biserial for independent samples
The function uses the convert function and corresponding rules of thumb:
* [es_convert](../effect_sizes/convert_es.html#es_convert) for the conversions
References
----------
Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). L. Erlbaum Associates.
Vargha, A., & Delaney, H. D. (2000). A critique and improvement of the CL common language effect size statistics of McGraw and Wong. *Journal of Educational and Behavioral Statistics, 25*(2), 101–132. doi:10.3102/10769986025002101
Author
------
Made by P. Stikker
Companion website: https://PeterStatistics.com
YouTube channel: https://www.youtube.com/stikpet
Donations: https://www.patreon.com/bePatron?u=19398076
Examples
--------
Example 1: using Cohen's rules:
>>> rank_biserial = 0.23
>>> th_rank_biserial(rank_biserial)
classification reference
0 small Cohen (1988, p. 82)
Example 2: Convert to Cohen d, then use Cohen d rules:
>>> rank_biserial = 0.23
>>> th_rank_biserial(rank_biserial, qual="cohen-conv")
classification reference
0 small Cohen (1988, p. 40)
'''
if (qual=="cohen"):
ref = "Cohen (1988, p. 82)"
if (abs(rb)<0.125):
qual = "negligible"
elif (abs(rb)<0.304):
qual = "small"
elif (abs(rb)<0.465):
qual = "medium"
else:
qual = "large"
elif (qual=="vd"):
ref = "Vargha and Delaney (2000, p. 106)"
if (abs(rb)<0.11):
qual = "negligible"
elif (abs(rb)<0.28):
qual = "small"
elif (abs(rb)<0.43):
qual = "medium"
else:
qual = "large"
elif (qual in ["sawilowsky", "cohen-conv", "lovakov", "rosenthal", "brydges"]):
if qual=="cohen-conv":
qual="cohen"
#convert to Cohen's d
d = es_convert(rb, fr="rb", to="cohend")
res = th_cohen_d(d, qual)
qual = res["classification"][0]
ref = res["reference"][0]
results = pd.DataFrame([[qual, ref]], columns=["classification", "reference"])
return(results)
Functions
def th_rank_biserial(rb, qual='cohen')
-
Rule Of Thumb For Rank Biserial Correlation
Simple function to use a rule-of-thumb for the Rank Biserial Correlation.
This function is shown in this YouTube video and the measure is also described at PeterStatistics.com
Parameters
rb
:float
- the rank-biserial correlation value
qual
:{"cohen", "vd", "sawilowsky", "cohen-conv", "lovakov", "rosenthal", "brydges"}
, optional- indication which set of rule-of-thumb to use.
Returns
pandas.DataFrame
-
A dataframe with the following columns:
- classification, the qualification of the effect size
- reference, a reference for the rule of thumb used
Notes
Cohen's rule of thumb for rank biserial (1988, p. 82):
|r_b| Interpretation 0.00 < 0.125 negligible 0.125 < 0.304 small 0.304 < 0.465 medium 0.465 or more large Vargha and Delaney (2000, p. 106):
|r_b| Interpretation 0.00 < 0.11 negligible 0.11 < 0.28 small 0.28 < 0.43 medium 0.43 or more large Other options are available by converting the rank biserial to Cohen d.
Before, After and Alternatives
Before this you might want to obtain the measure: * r_rank_biserial_os to determine a the rank biserial for one-sample * r_rank_biserial_is to determine a the rank biserial for independent samples
The function uses the convert function and corresponding rules of thumb: * es_convert for the conversions
References
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). L. Erlbaum Associates.
Vargha, A., & Delaney, H. D. (2000). A critique and improvement of the CL common language effect size statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics, 25(2), 101–132. doi:10.3102/10769986025002101
Author
Made by P. Stikker
Companion website: https://PeterStatistics.com
YouTube channel: https://www.youtube.com/stikpet
Donations: https://www.patreon.com/bePatron?u=19398076Examples
Example 1: using Cohen's rules:
>>> rank_biserial = 0.23 >>> th_rank_biserial(rank_biserial) classification reference 0 small Cohen (1988, p. 82)
Example 2: Convert to Cohen d, then use Cohen d rules:
>>> rank_biserial = 0.23 >>> th_rank_biserial(rank_biserial, qual="cohen-conv") classification reference 0 small Cohen (1988, p. 40)
Expand source code
def th_rank_biserial(rb, qual="cohen"): ''' Rule of thumb for Rank Biserial Correlation -------------------------- Simple function to use a rule-of-thumb for the Rank Biserial Correlation. This function is shown in this [YouTube video](https://youtu.be/Tx4wJxuh5AM) and the measure is also described at [PeterStatistics.com](https://peterstatistics.com/Terms/Correlations/RankBiserialCorrelation.html) Parameters ---------- rb : float the rank-biserial correlation value qual : {"cohen", "vd", "sawilowsky", "cohen-conv", "lovakov", "rosenthal", "brydges"}, optional indication which set of rule-of-thumb to use. Returns ------- pandas.DataFrame A dataframe with the following columns: * *classification*, the qualification of the effect size * *reference*, a reference for the rule of thumb used Notes ----- Cohen's rule of thumb for rank biserial (1988, p. 82): |\\|r_b\\|| Interpretation| |---|----------| |0.00 < 0.125 | negligible | |0.125 < 0.304 | small | |0.304 < 0.465 | medium | |0.465 or more | large | Vargha and Delaney (2000, p. 106): |\\|r_b\\|| Interpretation| |---|----------| |0.00 < 0.11 | negligible | |0.11 < 0.28 | small | |0.28 < 0.43 | medium | |0.43 or more | large | Other options are available by converting the rank biserial to Cohen d. Before, After and Alternatives ------------------------------ Before this you might want to obtain the measure: * [r_rank_biserial_os](../correlations/cor_rank_biserial_os.html#r_rank_biserial_os) to determine a the rank biserial for one-sample * [r_rank_biserial_is](../correlations/r_rank_biserial_is.html#r_rank_biserial_is) to determine a the rank biserial for independent samples The function uses the convert function and corresponding rules of thumb: * [es_convert](../effect_sizes/convert_es.html#es_convert) for the conversions References ---------- Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed.). L. Erlbaum Associates. Vargha, A., & Delaney, H. D. (2000). A critique and improvement of the CL common language effect size statistics of McGraw and Wong. *Journal of Educational and Behavioral Statistics, 25*(2), 101–132. doi:10.3102/10769986025002101 Author ------ Made by P. Stikker Companion website: https://PeterStatistics.com YouTube channel: https://www.youtube.com/stikpet Donations: https://www.patreon.com/bePatron?u=19398076 Examples -------- Example 1: using Cohen's rules: >>> rank_biserial = 0.23 >>> th_rank_biserial(rank_biserial) classification reference 0 small Cohen (1988, p. 82) Example 2: Convert to Cohen d, then use Cohen d rules: >>> rank_biserial = 0.23 >>> th_rank_biserial(rank_biserial, qual="cohen-conv") classification reference 0 small Cohen (1988, p. 40) ''' if (qual=="cohen"): ref = "Cohen (1988, p. 82)" if (abs(rb)<0.125): qual = "negligible" elif (abs(rb)<0.304): qual = "small" elif (abs(rb)<0.465): qual = "medium" else: qual = "large" elif (qual=="vd"): ref = "Vargha and Delaney (2000, p. 106)" if (abs(rb)<0.11): qual = "negligible" elif (abs(rb)<0.28): qual = "small" elif (abs(rb)<0.43): qual = "medium" else: qual = "large" elif (qual in ["sawilowsky", "cohen-conv", "lovakov", "rosenthal", "brydges"]): if qual=="cohen-conv": qual="cohen" #convert to Cohen's d d = es_convert(rb, fr="rb", to="cohend") res = th_cohen_d(d, qual) qual = res["classification"][0] ref = res["reference"][0] results = pd.DataFrame([[qual, ref]], columns=["classification", "reference"]) return(results)