Module stikpetP.other.thumb_yule_q
Expand source code
import pandas as pd
def th_yule_q(q, qual="glen"):
'''
Rules of thumb for Yule Q
-------------------------
Simple function to use a rule-of-thumb for Yule Q effect size.
According to Lloyd et al. (2013, p. 484) the rules-of-thumb from the Odds Ratio from Rosenthal could be used, see [th_odds_ratio](../other/thumb_odds_ratio.html#th_odds_ratio).
Parameters
----------
q : float
the Yule q value
qual : {"glen"}, optional
indication which set of rule-of-thumb to use. Currently only "glen" (default)
Returns
-------
results : a pandas dataframe with.
* *classification*, the qualification of the effect size
* *reference*, a reference for the rule of thumb used
Notes
-----
Glen rule of thumb for Yule Q (2017):
|\\|Q\\|| Interpretation|
|---|----------|
|0.00 < 0.30 | negligible |
|0.30 < 0.50 | moderate |
|0.50 < 0.70 | substantial |
|0.70 or more | very strong |
See Also
--------
stikpetP.effect_sizes.eff_size_bin_bin.es_bin_bin : to determine a Yule Q
References
----------
Glen, S. (2017, August 16). Gamma Coefficient (Goodman and Kruskal’s Gamma) & Yule’s Q. Statistics How To. https://www.statisticshowto.com/gamma-coefficient-goodman-kruskal/
Author
------
Made by P. Stikker
Companion website: https://PeterStatistics.com
YouTube channel: https://www.youtube.com/stikpet
Donations: https://www.patreon.com/bePatron?u=19398076
Examples
--------
>>> es = 0.6
>>> th_yule_q(es)
classification reference
0 substantial Glen (2017)
'''
if (qual=="glen"):
ref = "Glen (2017)"
if (abs(q)<0.29):
qual = "very small"
elif (abs(q)<0.49):
qual = "moderate"
elif (abs(q)<0.69):
qual = "substantial"
else:
qual = "very strong"
results = pd.DataFrame([[qual, ref]], columns=["classification", "reference"])
return(results)
Functions
def th_yule_q(q, qual='glen')
-
Rules Of Thumb For Yule Q
Simple function to use a rule-of-thumb for Yule Q effect size.
According to Lloyd et al. (2013, p. 484) the rules-of-thumb from the Odds Ratio from Rosenthal could be used, see th_odds_ratio.
Parameters
q
:float
- the Yule q value
qual
:{"glen"}
, optional- indication which set of rule-of-thumb to use. Currently only "glen" (default)
Returns
results : a pandas dataframe with.
- classification, the qualification of the effect size
- reference, a reference for the rule of thumb used
Notes
Glen rule of thumb for Yule Q (2017):
|Q| Interpretation 0.00 < 0.30 negligible 0.30 < 0.50 moderate 0.50 < 0.70 substantial 0.70 or more very strong See Also
es_bin_bin()
- to determine a Yule Q
References
Glen, S. (2017, August 16). Gamma Coefficient (Goodman and Kruskal’s Gamma) & Yule’s Q. Statistics How To. https://www.statisticshowto.com/gamma-coefficient-goodman-kruskal/
Author
Made by P. Stikker
Companion website: https://PeterStatistics.com
YouTube channel: https://www.youtube.com/stikpet
Donations: https://www.patreon.com/bePatron?u=19398076Examples
>>> es = 0.6 >>> th_yule_q(es) classification reference 0 substantial Glen (2017)
Expand source code
def th_yule_q(q, qual="glen"): ''' Rules of thumb for Yule Q ------------------------- Simple function to use a rule-of-thumb for Yule Q effect size. According to Lloyd et al. (2013, p. 484) the rules-of-thumb from the Odds Ratio from Rosenthal could be used, see [th_odds_ratio](../other/thumb_odds_ratio.html#th_odds_ratio). Parameters ---------- q : float the Yule q value qual : {"glen"}, optional indication which set of rule-of-thumb to use. Currently only "glen" (default) Returns ------- results : a pandas dataframe with. * *classification*, the qualification of the effect size * *reference*, a reference for the rule of thumb used Notes ----- Glen rule of thumb for Yule Q (2017): |\\|Q\\|| Interpretation| |---|----------| |0.00 < 0.30 | negligible | |0.30 < 0.50 | moderate | |0.50 < 0.70 | substantial | |0.70 or more | very strong | See Also -------- stikpetP.effect_sizes.eff_size_bin_bin.es_bin_bin : to determine a Yule Q References ---------- Glen, S. (2017, August 16). Gamma Coefficient (Goodman and Kruskal’s Gamma) & Yule’s Q. Statistics How To. https://www.statisticshowto.com/gamma-coefficient-goodman-kruskal/ Author ------ Made by P. Stikker Companion website: https://PeterStatistics.com YouTube channel: https://www.youtube.com/stikpet Donations: https://www.patreon.com/bePatron?u=19398076 Examples -------- >>> es = 0.6 >>> th_yule_q(es) classification reference 0 substantial Glen (2017) ''' if (qual=="glen"): ref = "Glen (2017)" if (abs(q)<0.29): qual = "very small" elif (abs(q)<0.49): qual = "moderate" elif (abs(q)<0.69): qual = "substantial" else: qual = "very strong" results = pd.DataFrame([[qual, ref]], columns=["classification", "reference"]) return(results)