References
A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z
A
Abderrahmane, M., & Boukhetala, K. B. (2016). Two news approximations to standard normal distribution function. Journal of Applied & Computational Mathematics, 5(5), 1–2. doi:10.4172/2168-9679.1000328
Abernathy, R. W. (1988). Finding normal probabilities with a hand-held calculator. The Mathematics Teacher, 81(8), 651–652. doi:10.2307/27965982
Acock, A. C. (2008). A gentle introduction to Stata (2nd ed.). College Station, Tex: Stata Press.
Adams, A. G. (1969a). Algorithm 39: Areas under the normal curve. The Computer Journal, 12(2), 197–199. doi:10.1093/comjnl/12.2.197
Adams, A. G. (1969b). Remark on algorithm 304 [S15]: Normal curve integral. Communications of the ACM, 12(10), 565–566. doi:10.1145/363235.363253
Agresti, A., & Coull, B. A. (1998). Approximate Is Better than “Exact” for Interval Estimation of Binomial Proportions. The American Statistician, 52(2), 119–126. doi:10.2307/2685469
Agresti, A. (2013). Statistics: The art and science of learning from data (3rd ed). Pearson.
Albers, W., & Kallenberg, W. C. M. (1994). A simple approximation to the bivariate normal distribution with large correlation coefficient. Journal of Multivariate Analysis, 49(1), 87–96. doi:10.1006/jmva.1994.1015
Alexander, R. A., & Govern, D. M. (1994). A new and simpler approximation for ANOVA under variance heterogeneity. Journal of Educational Statistics, 19(2), 91–101. doi:10.2307/1165140
Allen, A. O. (1990). Probability, statistics, and queueing theory with computer science applications (2nd ed.). Academic Press.
Alroy, J. (2015). A new twist on a very old binary similarity coefficient. Ecology, 96(2), 575–586. doi:10.1890/14-0471.1
Aludaat, K. M., & Alodat, M. T. (2008). A note on approximating the normal distribution function. Applied Mathematical Sciences, 2(9), 425–429.
Anderberg, M. R. (with Internet Archive). (1973). Cluster analysis for applications. New York, Academic Press.
Anderson, D. R. (2011). Statistics for business and economics (11 ed.). South-Western Cengage Learning.
American Psychological Association (Ed.). (2019). Publication manual of the American Psychological Association (7th ed.). American Psychological Association.
Aristotle. (1850). The nicomachean ethics of Aristotle (R. W. Browne, Trans.). Henry G. Bohn.
Arnold, J. (2018, December 3). Maximum Likelihood for the multinomial distribution (bag of words) [Blog]. Jakuba. https://blog.jakuba.net/maximum-likelihood-for-multinomial-distribution/
Aspin, A. A. (1948). An examination and further development of a formula arising in the problem of comparing two mean values. Biometrika, 35(1/2), 88–96. doi:10.2307/2332631
Aspin, A. A., & Welch, B. L. (1949). Tables for use in comparisons whose accuracy involves two variances, separately estimated. Biometrika, 36(3/4), 290. doi:10.2307/2332668
Austin, B., & Colwell, R. R. (1977). Evaluation of some coefficients for use in numerical taxonomy of microorganisms. International Journal of Systematic Bacteriology, 27(3), 204–210. doi:10.1099/00207713-27-3-204
Ayinde, K., & Abidoye, A. O. (2010). Simplified Freeman-Tukey test statistics for testing probabilities in contingency tables. Science World Journal, 2(2), 21–27. doi:10.4314/swj.v2i2.51730
B
Badhe, S. K. (1976). New approximation of the normal distribution function. Communications in Statistics - Simulation and Computation, 5(4), 173–176. doi:10.1080/03610917608812017
Bagby, R. J. (1995). Calculating normal probabilities. The American Mathematical Monthly, 102(1), 46–49. doi:10.1080/00029890.1995.11990532
Baguley, T. (2004). An Introduction to Sphericity. Retrieved July 1, 2019, from http://homepages.gold.ac.uk/aphome/spheric.html
Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. Behavior Research Methods, 37(3), 379–384. doi:10.3758/BF03192707
Baroni-Urbani, C., & Buser, M. W. (1976). Similarity of binary data. Systematic Zoology, 25(3), 251–259. doi:10.2307/2412493
Bartz, A. E. (1999). Basic statistical concepts (4th ed). Upper Saddle River, NJ: Merrill.
Baughman, A. L. (1988). A FORTRAN function for the bivariate normal integral. Computer Methods and Programs in Biomedicine, 27(2), 169–174. doi:10.1016/0169-2607(88)90028-4
Becker, M. P., & Clogg, C. C. (1988). A note on approximating correlations from Odds Ratios. Sociological Methods & Research, 16(3), 407–424. doi:10.1177/0049124188016003003
Ben-Shachar, M., Lüdecke, D., & Makowski, D. (2020). effectsize: Estimation of Effect Size Indices and Standardized Parameters. Journal of Open Source Software, 5(56), 1–7. doi:10.21105/joss.02815
Ben-Shachar, M. S., Patil, I., Thériault, R., Wiernik, B. M., & Lüdecke, D. (2023). Phi, fei, fo, fum: Effect sizes for categorical data that use the chi-squared statistic. Mathematics, 11(1982), 1–10. doi:10.3390/math11091982
Berger, V. W. (2017). An empirical demonstration of the need for exact tests. Journal of Modern Applied Statistical Methods, 16(1), 34–50. doi:10.22237/jmasm/1493596920
Berger, W. H., & Parker, F. L. (1970). Diversity of planktonic foraminifera in deep-sea sediments. Science, 168(3937), 1345–1347. doi:10.1126/science.168.3937.1345
Bergsma, W. (2013). A bias-correction for Cramér’s and Tschuprow’s. Journal of the Korean Statistical Society, 42(3), 323–328. doi:10.1016/j.jkss.2012.10.002
Bergson, A. (1968). Certification of and remark on algorithm 304: Normal curve integral. Communications of the ACM, 11(4), 271. doi:10.1145/362991.363048
Beri, G. C. (2010). Business Statistics (3rd ed). New Delhi: Tata McGraw-Hill Education.
Berry, K. J., Johnston, J. E., & Mielke, P. W. (2007). An alternative measure of effect size for Cochran’s Q test for related proportions. Perceptual and Motor Skills, 104(3), 1236–1242. doi:10.2466/pms.104.4.1236-1242
Berry, K. J., & Mielke, P. W. (1995). Exact cumulative probabilities for the multinomial distribution. Educational and Psychological Measurement, 55(5), 769–772. doi:10.1177/0013164495055005008
Bhapkar, V. P. (1966). A note on the equivalence of two test criteria for hypotheses in categorical data. Journal of the American Statistical Association, 61(313), 228–235. doi:10.2307/2283057
Bian, G., McAleer, M., & Wong, W.-K. (2009). A trinomial test for paired data when there are many ties. *SSRN Electronic Journal*. doi:10.2139/ssrn.1410589
Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (2007). Discrete multivariate analysis. Springer.
Boden, L. (2011). Clinical studies utilising ordinal data: Pitfalls in the analysis and interpretation of clinical grading systems: Clinical studies utilising ordinal data. Equine Veterinary Journal, 43(4), 383–387.doi:10.1111/j.2042-3306.2011.00414.x
Boiroju, N. K., & Ramakrishna, R. (2014). A combined approximation to t-distribution. International Journal of Scientific and Engineering Research, 5(4), 108–111.
Bonett, D. G., & Price, R. M. (2005). Inferential methods for the tetrachoric correlation coefficient. Journal of Educational and Behavioral Statistics, 30(2), 213–225. doi:10.3102/10769986030002213
Bonett, D. G., & Price, R. M. (2007). Statistical inference for generalized yule coefficients in 2 × 2 contingency tables. Sociological Methods & Research, 35(3), 429–446. doi:10.1177/0049124106292358
Bonferroni, C. E. (1935). Il calcolo delle assicurazioni su gruppi di teste. In Studi in Onore del Professore Salvatore Ortu Carboni (pp. 13–60).
Borth, D. M. (1973). A modification of Owen’s method for computing the bi-variate normal integral. Applied Statistics, 22(1), 82. doi:10.2307/2346306
Bowker, A. H. (1948). A test for symmetry in contingency tables. Journal of the American Statistical Association, 43(244), 572–574. doi:10.2307/2280710
Bowling, S. R., Khasawneh, M. T., Kaewkuekool, S., & Cho, B. R. (2009). A logistic approximation to the cumulative normal distribution. Journal of Industrial Engineering and Management, 2(1),. doi:10.3926/jiem..v2n1.p114-127
Box, G. E. P. (1954a). Some theorems on quadratic forms applied in the study of analysis of variance problems, I: Effect of inequality of variance in the one-way classification. The Annals of Mathematical Statistics, 25(2), 290–302. doi:10.1214/aoms/1177728786
Box, G. E. P. (1954b). Some theorems on quadratic forms applied in the study of analysis of variance problems II: Effects of inequality of variance and of correlation between errors in the two-way classification. The Annals of Mathematical Statistics, 25(3), 484–498. doi10.1214/aoms/1177728717
Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experimenters: An introduction to design, data analysis, and model building. John Wiley & Sons.
Brase, C. (2009). Understandable statistics (9th ed.). Houghton MIfflin.
Braun-Blanquet, J. (1932). Plant sociology: The study of plant communities. McGraw Hill.
Brown, M. B. (1977). Algorithm AS 116: The tetrachoric correlation and its asymptotic standard error. Applied Statistics, 26(3), 343. doi:10.2307/2346985
Brown, M. B., & Forsythe, A. B. (1974). The small sample behavior of some statistics which test the equality of several means. Technometrics, 16(1), 129–132. doi:10.1080/00401706.1974.10489158
Brunner, E., & Munzel, U. (2000). The nonparametric Behrens-Fisher problem: Asymptotic theory and a small-sample approximation. Biometrical Journal, 42(1), 17–25. doi:10.1002/(SICI)1521-4036(200001)42:1<17::AID-BIMJ17>3.0.CO;2-U
Bryc, W. (2002). A uniform approximation to the right normal tail integral. Applied Mathematics and Computation, 127(2–3), 365–374. doi:10.1016/S0096-3003(01)00015-7
Brydges, C. R. (2019). Effect size guidelines, sample size calculations, and statistical power in gerontology. Innovation in Aging, 3(4), 1–8. doi:10.1093/geroni/igz036
Bulla, L. (1994). An index of evenness and its associated diversity measure. Oikos, 70(1), 167–171. doi:10.2307/3545713
Bunday, B. D., Bokhari, S. M. H., & Khan, K. H. (1997). A new algorithm for the normal distribution function. Test, 6(2), 369–377. doi:10.1007/BF02564704
Burr, I. W. (1967). A useful approximation to the normal distribution function, with application to simulation. Technometrics, 9(4), 647–651. doi:10.1080/00401706.1967.10490512
C
Cadwell, J. H. (1951). The bivariate normal integral. Biometrika, 38(3/4), 475. doi:10.2307/2332596
Cafiso, S., Di Graziano, A., & Pappalardo, G. (2013). Using the Delphi method to evaluate opinions of public transport managers on bus safety. Safety Science, 57, 254–263. doi:10.1016/j.ssci.2013.03.001
Cavus, M., & Yazıcı, B. (2020). Testing the equality of normal distributed and independent groups’ means under unequal variances by doex package. The R Journal, 12(2), 134. doi:10.32614/RJ-2021-008
Cha, S.-H., Tappert, C., & Yoon, S. (2006). Enhancing binary feature vector similarity measures. Journal of Pattern Recognition Research, 1(1), 63–77. doi:10.13176/11.20
Chaudhary, K. K. S., Kumar, A., & Alka. (2009). Statistics in management studies (10th ed). Meerut: Krishna Prakashan Media.
Chinn, S. (2000). A simple method for converting an odds ratio to effect size for use in meta-analysis. Statistics in Medicine, 19(22), 3127–3131. doi:10.1002/1097-0258(20001130)19:22<3127::aid-sim784>3.0.co;2-m
Choudhury, A. (2014). A simple approximation to the area under standard normal curve. Mathematics and Statistics, 2(3), 147–149. doi:10.13189/ms.2014.020307
Choudhury, A., Ray, S., & Sarkar, P. (2007). Approximating the cumulative distribution function of the normal distribution. Journal of Statistical Research, 41(1), 59–67.
Choudhury, A., & Roy, P. (2009). A fairly accurate approximation to the area under normal curve. Communications in Statistics - Simulation and Computation, 38(7), 1485–1492. doi:10.1080/03610910903009344
Chen, P. Y., & Popovich, P. M. (2002). Correlation: Parametric and nonparametric measures. Sage Publications.
Choi, S.-S., Cha, S.-H., & Tappert, C. (2010). A survey of binary similarity and distance measures. Journal on Systemics, Cybernetics and Informatics, 8(1), 43–48.
Chung, E., & Romano, J. P. (2011). Asymptotically valid and exact permutation tests based on two-sample U-statistics (2011–09; pp. 1–45). Stanford University.
Clement, P. W. (1976). A formula for computing inter-observer agreement. Psychological Reports, 39(1), 257–258. doi:10.2466/pr0.1976.39.1.257
Cleveland, W. S., & McGill, R. (1984). Graphical perception: Theory, experimentation, and application to the development of graphical methods. Journal of the American Statistical Association, 79(387), 531–554. doi:10.2307/2288400
Cliff, N. (1993). Dominance statistics: Ordinal analyses to answer ordinal questions. Psychological Bulletin, 114(3), 494–509. doi:10.1037/0033-2909.114.3.494
Cochran, W. G. (1937). Problems arising in the analysis of a series of similar experiments. Supplement to the Journal of the Royal Statistical Society, 4(1), 102–118. doi:10.2307/2984123
Cochran, W. G. (1954). Some methods for strengthening the common chi-square tests. Biometrics, 10(4), 417. doi:10.2307/3001616
Cody, W. J. (1969). Rational Chebyshev approximations for the error function. Mathematics of Computation, 23(107), 631–637. doi:10.1090/S0025-5718-1969-0247736-4
Cody, W. J. (1993). Algorithm 715: SPECFUN–a portable FORTRAN package of special function routines and test drivers. ACM Transactions on Mathematical Software, 19(1), 22–30. doi:10.1145/151271.151273
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46. doi:10.1177/001316446002000104
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed). Hillsdale, N.J: L. Erlbaum Associates.
Cole, L. C. (1949). The measurement of interspecific associaton. Ecology, 30(4), 411–424. doi:10.2307/1932444
Cole, T. J. (2015). Too many digits: the presentation of numerical data. Archives of Disease in Childhood, 100(7), 608–609. doi:10.1136/archdischild-2014-307149
Cooper, B. E. (1968). Algorithm AS 2: The normal integral. Applied Statistics, 17(2), 186. doi:10.2307/2985683
Cooper, B. E. (1968). Algorithm AS 4: An auxiliary function for distribution integrals. Journal of the Royal Statistical Society. Series C (Applied Statistics), 17(2), 190–192. doi:10.2307/2985685
Cooper, B. E. (1969). Algorithm AS 4: An auxiliary function for distribution integrals: Corrigenda. Applied Statistics, 18(1), 118. doi:10.2307/2346457
Cournot, A. A. (1843). Exposition de la théorie des chances et des probabilités. L. Hachette
Cox, D. R., & Wermuth, N. (1991). A simple approximation for bivariate and trivariate normal integrals. International Statistical Review / Revue Internationale de Statistique, 59(2), 263. doi:10.2307/1403446
Cramér, H. (1946). Mathematical methods of statistics. Princeton: Princeton University Press.
Crawford, M., & Techo, R. (1962). Algorithm 123: Real error function, ERF( x ). Communications of the ACM, 5(9), 483. doi:10.1145/368834.368893
Cressie, N., & Read, T. R. C. (1984). Multinomial goodness-of-fit tests. Journal of the Royal Statistical Society: Series B (Methodological), 46(3), 440–464. doi:10.1111/j.2517-6161.1984.tb01318.x
Cribbie, R. A., Fiksenbaum, L., Keselman, H. J., & Wilcox, R. R. (2012). Effect of non-normality on test statistics for one-way independent groups designs: Effects of non-normality on test statistics. British Journal of Mathematical and Statistical Psychology, 65(1), 56–73. doi:10.1111/j.2044-8317.2011.02014.x
Cureton, E. E. (1956). Rank-biserial correlation. Psychometrika, 21(3), 287–290. doi:10.1007/BF02289138
Cureton, E. E. (1967). The normal approximation to the signed-rank sampling distribution when zero differences are present. Journal of the American Statistical Association, 62(319), 1068–1069. doi:10.1080/01621459.1967.10500917
Cyvin, S. J. (1964). Algorithm 226: Normal distribution function. Communications of the ACM, 7(5), 295. doi:10.1145/364099.364315
D
Daley, D. J. (1974). Computation of bi- and tri-variate normal integrals. Applied Statistics, 23(3), 435. doi:10.2307/2347136
De Vaus, D. A. (2002). Surveys in social research (5th ed.). London: Routledge.
Delacre, M., Leys, C., Mora, Y. L., & Lakens, D. (2019). Taking parametric assumptions seriously: Arguments for the use of Welch’s F-test instead of the classical F-test in one-way ANOVA. International Review of Social Psychology, 32(1), 1–12. doi:10.5334/irsp.198
Delaney, H. D., & Vargha, A. (2002). Comparing several robust tests of stochastic equality with ordinally scaled variables and small to moderate sized samples. Psychological Methods, 7(4), 485–503. doi:10.1037/1082-989X.7.4.485
Dennis, S. F. (1965). The construction of a thesaurus automatically from a sample of text. In M. E. Stevens, V. E. Giuliano, & L. B. Heilprin (Eds.), Statistical Association Methods for Mechanized Documentation (Vol. 14, pp. 61–148). U.S. Government Printing Office.
Derenzo, S. E. (1977). Approximations for hand calculators using small integer coefficients. Mathematics of Computation, 31(137), 214–222. doi:10.1090/S0025-5718-1977-0423761-X
Derrick, B., & White, P. (2018). Methods for comparing the responses from a Likert question, with paired observations and independent observations in each of two samples. International Journal of Mathematics and Statistics, 19(3), 84–93.
Deshon, R. P., & Alexander, R. A. (1994). A generalization of James’s second-order approximation to the test for regression slope equality. Educational and Psychological Measurement, 54(2), 328–335. doi:10.1177/0013164494054002007
Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297–302. doi:10.2307/1932409
Digby, P. G. N. (1983). Approximating the tetrachoric correlation coefficient. Biometrics, 39(3), 753–757. doi:10.2307/2531104
Dinneen, L. C., & Blakesley, B. C. (1973). Algorithm AS 62: A generator for the sampling distribution of the Mann- Whitney U statistic. Journal of the Royal Statistical Society. Series C (Applied Statistics), 22(2), 269–273. doi:10.2307/2346934
Divgi, D. R. (1979). Calculation of univariate and bivariate normal probability functions. The Annals of Statistics, 7(4). doi:10.1214/aos/1176344739
Divgi, D. R. (1979). Calculation of the tetrachoric correlation coefficient. Psychometrika, 44(2), 169–172. doi: 10.1007/BF02293968
Divine, G. W., Norton, H. J., Barón, A. E., & Juarez-Colunga, E. (2018). The Wilcoxon-Mann-Whitney procedure fails as a test of medians. The American Statistician, 72(3), 278–286. doi:10.1080/00031305.2017.1305291
Doane, D. P. (1976). Aesthetic Frequency Classifications. The American Statistician, 30(4), 181–183. doi:10.2307/2683757
Donnelly, T. G. (1973). Algorithm 462: Bivariate normal distribution. Communications of the ACM, 16(10), 638. doi:10.1145/362375.362414
Doolittle, M. H. (1885). The verification of predictions. Bulletin of the Philosophical Society of Washington, 7, 122–127.
Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization of continuous features (A. Prieditis & S. Russell, Eds.; pp. 194–202). Morgan Kaufmann. http://citeseer.ist.psu.edu/109288.html
Drezner, Z. (1978). Computation of the bivariate normal integral. Mathematics of Computation, 32(141), 277–279. doi: 10.1090/S0025-5718-1978-0461849-9
Drezner, Z., & Wesolowsky, G. O. (1990). On the computation of the bivariate normal integral. Journal of Statistical Computation and Simulation, 35(1–2), 101–107. doi: 10.1080/00949659008811236
Dridi, C. (2003). A short note on the numerical approximation of the standard normal cumulative distribution and its inverse. Computational Economics.
Driver, H. E., & Kroeber, A. L. (1932). Quantitative expression of cultural relationships. University Of California Publications in American Archeology and Ethnology, 31(4), 211–256.
Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New York, NY: Wiley.
Dudewicz, E. J., & Dalal, S. R. (1972). On approximations to the t-distribution. Journal of Quality Technology, 4(4), 196–198. doi: 10.1080/00224065.1972.11980550
Dunn, O. J. (1964). Multiple comparisons using rank sums. Technometrics, 6(3), 241–252. doi:10.1080/00401706.1964.10490181
Durlak, J. A. (2009). How to select, calculate, and interpret effect sizes. Journal of Pediatric Psychology, 34(9), 917–928. doi: 10.1093/jpepsy/jsp004
E
Edgeworth, F. Y. (1905). The law of error. Transactions of the Cambridge Philosophical Society, 20, 36–66.
Edwards, A. W. F. (1963). The measure of association in a 2 × 2 table. Journal of the Royal Statistical Society. Series A (General), 126(1), 109. doi: 10.2307/2982448
Edwards, J. H. (1957). A Note on the practical interpretation of 2 x 2 tables. Journal of Epidemiology & Community Health, 11(2), 73–78. doi: 10.1136/jech.11.2.73
Edwards, J. H., & Edwards, A. W. F. (1984). Approximating the tetrachoric correlation coefficient. Biometrics, 40(2), 563–563.
Eidous, O., & Al-Salman, S. (2016). One-term Approximation for normal distribution function. Mathematics and Statistics, 4(1), 15–18. doi: 10.13189/ms.2016.040102
Ellis, D., Furner-Hines, J., & Willett, P. (1994). On the measurement of inter-linker consistency and retrieval effectiveness in hypertext databases. In B. W. Croft & C. J. van Rijsbergen (Eds.), SIGIR ’94 (pp. 51–60). Springer. doi:10.1007/978-1-4471-2099-5_6
Everitt, B. (2004). The Cambridge dictionary of statistics (2nd ed). Cambridge: Cambridge University Press.
Eyraud, H. (1936). Les principes de la mesure des correlations. Ann. Univ. Lyon, III. Ser., Sect. A, 1(30–47), 111.
F
Fager, E. W., & McGowan, J. A. (1963). Zooplankton species groups in the north pacific: Co-occurrences of species can be used to derive groups whose members react similarly to water-mass types. Science, 140(3566), 453–460. doi:10.1126/science.140.3566.453
Faith, D. P. (1983). Asymmetric binary similarity measures. Oecologia, 57(3), 287–290. doi:10.1007/BF00377169
Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. doi:10.3758/BRM.41.4.1149
Fayyad, U. M., & Irani, K. B. (1993). Multi-interval discretization of continuous-valued attributes for classification learning. 1022–1029. http://dblp.uni-trier.de/db/conf/ijcai/ijcai93.html
Festinger, L. (1946). The significance of difference between means without reference to the frequency distribution function. Psychometrika, 11(2), 97–105. doi:10.1007/BF02288926
Field, A. P. (2009). Discovering statistics using SPSS: (And sex, drugs and rock “n” roll) (3rd ed). Los Angeles, CA: SAGE Publications.
Fisher, R. A. (1918). The correlation between relatives on the supposition of mendelian inheritance. Transactions of the Royal Society of Edinburgh, 52, 399–433.
Fisher, R. A. (1922). On the Interpretation of χ2 from Contingency Tables, and the Calculation of P. Journal of the Royal Statistical Society, 85(1), 87–94. doi: 10.2307/2340521
Fisher, R. A. (1925). Statistical methods for research workers. Edinburgh: Oliver and Boyd.
Fisher, R. A. (1934). Statistical methods for research workers (5th ed.). Oliver and Boyd.
Fisher, R. A. (1935a). The design of experiments. Oliver and Boyd.
Fisher, R. A. (1935b). The logic of inductive inference. Journal of the Royal Statistical Society, 98(1), 39–82. doi:10.2307/2342435
Fisher, R. A. (1950). Statistical methods for research workers (11th rev.). Oliver and Boyd.
Fisher, R. A., Thornton, H. G., & Mackenzie, W. A. (1922). The accuracy of the plating method of estimating the density of bacterial populations. Annals of Applied Biology, 9, 325–359.
Fleiss, J. L. (1975). Measuring agreement between two judges on the presence or absence of a trait. Biometrics, 31(3), 651–659. doi:10.2307/2529549
Fligner, M. A., & Policello, G. E. (1981). Robust rank procedures for the Behrens-Fisher problem. Journal of the American Statistical Association, 76(373), 162–168. doi:10.1080/01621459.1981.10477623
Fong, Y., & Huang, Y. (2019). Modified Wilcoxon–Mann–Whitney test and power against strong null. The American Statistician, 73(1), 43–49. doi:10.1080/00031305.2017.1328375
Forbes, S. A. (1907). On the local distribution of certain Illinois fishes: An essay in statistical ecology. Illinois Natural History Survey Bulletin, 7(8), 273–303.
Forbes, S. A. (1925). Method of determining and measuring the associative relations of species. Science, 61, 524.
Fossum, E. G., & Kaskey, G. (1966). Optimization and standardization of information retrieval language and systems (AF49(638)1194; p. 96). Univac Division.
Fradette, K., Keselman, H. J., Lix, L., Algina, J., & Wilcox, R. R. (2003). Conventional and robust paired and independent-samples t tests: Type I error and power rates. Journal of Modern Applied Statistical Methods, 2(2), 481–496. doi:10.22237/jmasm/1067646120
Freedman, D., & Diaconis, P. (1981). On the histogram as a density estimator. Zeitschrift Für Wahrscheinlichkeitstheorie Und Verwandte Gebiete, 57(4), 453–476. doi:10.1007/BF01025868
Freeman, G. H., & Halton, J. H. (1951). Note on an exact treatment of contingency, goodness of fit and other problems of significance. Biometrika, 38(1/2), 141–149. doi:10.2307/2332323
Freeman, L. C. (1965). Elementary applied statistics: for students in behavioral science. New York: Wiley.
Freeman, M. F., & Tukey, J. W. (1950). Transformations Related to the angular and the square root. The Annals of Mathematical Statistics, 21(4), 607–611. doi:10.1214/aoms/1177729756
Friedman, H. (1968). Magnitude of experimental effect and a table for its rapid estimation. Psychological Bulletin, 70(4), 245–251. doi:10.1037/h0026258
Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance, Journal of the American Statistical Association 32(200), 675-701. doi:10.2307/2279372.
Friedman, M. (1939). A correction. Journal of the American Statistical Association 34(205),109. doi:10.1080/01621459.1939.10502372
Friendly, M. (2002). A brief history of the mosaic display. Journal of Computational and Graphical Statistics, 11(1), 89–107. doi:10.1198/106186002317375631
Fritz, C. O., Morris, P. E., & Richler, J. J. (2012). Effect size estimates: Current use, calculations, and interpretation. Journal of Experimental Psychology: General, 141(1), 2–18. doi:10.1037/a0024338
G
Galton, F. (1881). Report of the anthropometric committee. *Report of the British Association for the Advancement of Science, 51*, 225–272.
Galton, F. (1885). Some results of the anthropometric laboratory. Journal of the Anthropological Institute, 14, 275–287.
Games, P. A., & Howell, J. F. (1976). Pairwise multiple comparison procedures with unequal n’s and/or variances: A Monte Carlo study. Journal of Educational and Behavioral Statistics, 1(2), 113–125. doi:10.3102/10769986001002113
García-Pérez, M. A. (1999). MPROB: Computation of multinomial probabilities. Behavior Research Methods, Instruments, & Computers, 31(4), 701–705. doi:10.3758/BF03200749
Gaver, D. P., & Kafadar, K. (1984). A retrievable recipe for inverse t. The American Statistician, 38(4), 308–311. doi:10.1080/00031305.1984.10483236
Gentleman, W. M., & Jenk, M. A. (1968). An approximation for Student’s t-distribution. Biometrika, 55(3), 571–572. doi:10.1093/biomet/55.3.571
Genz, A., & Bretz, F. (2009). Computation of multivariate normal and t probabilities. Springer.
Gibbs, J. P., & Poston, D. L. (1975). The division of labor: Conceptualization and related measures. Social Forces, 53(3), 468. doi:10.2307/2576589
Gilbert, G. K. (1884). Finley’s tornado predictions. American Meteorological Journal, 1(5), 166–172.
Gilbert, N., & Wells, T. C. E. (1966). Analysis of quadrat data. Journal of Ecology, 54(3), 675–685. doi:10.2307/2257810
Girden, E. R. (1992). ANOVA: Repeated measures. Newbury Park, CA: Sage Publications.
Glass, G. V. (1976). Primary, secondary, and meta-analysis of research. Educational Researcher, 5(10), 3–8. doi:10.3102/0013189X005010003
Gleason, H. A. (1920). Some applications of the quadrat method. Bulletin of the Torrey Botanical Club, 47(1), 21–33. doi:10.2307/2480223
Gleason, J. R. (2000). A note on a proposed student t approximation. Computational Statistics & Data Analysis, 34(1), 63–66. doi:10.1016/S0167-9473(99)00070-5
Glen_b. (2015, January 27). Post-hoc test for chi-square goodness-of-fit test. Retrieved from https://stats.stackexchange.com/q/135098
Goodman, L. A., & Kruskal, W. H. (1954). Measures of association for cross classifications. Journal of the American Statistical Association, 49(268), 732–764. doi:10.2307/2281536
Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics, 27(4), 857. doi:10.2307/2528823
Gower, J. C., & Legendre, P. (1986). Metric and Euclidean properties of dissimilarity coefficients. Journal of Classification, 3(1), 5–48. doi:10.1007/BF01896809
Gravetter, F. J., & Wallnau, L. B. (2013). Statistics for the behavioral sciences (9th ed.). Wadsworth Cengage Learning.
Geisser, S., & Greenhouse, S. W. (1958). An extension of Box’s results on the use of the F distribution in multivariate analysis. The Annals of Mathematical Statistics, 29(3), 885–891. doi:10.1214/aoms/1177706545
Greenhouse, S. W., & Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24(2), 95–112. doi:10.1007/BF02289823
Grice, J. W., & Barrett, P. T. (2014). A note on Cohen’s overlapping proportions of normal distributions. Psychological Reports, 115(3), 741–747. doi:10.2466/03.pr0.115c29z4
Griffith, A. (2007). SPSS for dummies. Wiley.
Grissom, R. J. (1994). Statistical analysis of ordinal categorical status after therapies. Journal of Consulting and Clinical Psychology, 62(2), 281–284. doi:10.1037/0022-006X.62.2.281
Gumbel, E. J. (1939). La Probabilité des Hypothèses. Compes Rendus de l’ Académie des Sciences, 209, 645–647.
H
Haighton, J., Haworth, A., & Wake, G. (2003). Statistics. Cheltenham: Nelson Thornes.
Hamaker, H. C. (1978). Approximating the cumulative normal distribution and its inverse. Applied Statistics, 27(1), 76. doi:10.2307/2346231
Hamann, U. (1961). Merkmalsbestand und verwandtschaftsbeziehungen der farinosae: Ein beitrag zum system der monokotyledonen. Willdenowia, 2(5), 639–768.
Harris, F. C., & Lahey, B. B. (1978). A method for combining occurrence and nonoccurrence interobserver agreement scores. Journal of Applied Behavior Analysis, 11(4), 523–527. doi:10.1901/jaba.1978.11-523
Harris, T., & Hardin, J. W. (2013). Exact Wilcoxon Signed-Rank and Wilcoxon Mann–Whitney Ranksum Tests. The Stata Journal, 13(2), 337–343. doi:10.1177/1536867X1301300208
Hart, R. G. (1957). A formula for the approximation of definite integrals of the normal distribution function. Mathematics of Computation, 11, 265. doi:10.1090/S0025-5718-1957-0093024-0
Hart, R. G. (1966). A close approximation related to the error function. Mathematics of Computation, 20(96), 600–602. doi:10.1090/S0025-5718-1966-0203907-1
Hartigan, J. A., & Kleiner, B. (1981). Mosaics for contingency tables. In W. F. Eddy (Ed.), Proceedings of the 13th Symposium on the Interface (pp. 268–273). Springer. doi:10.1007/978-1-4613-9464-8_37
Hartung, J., Argaç, D., & Makambi, K. H. (2002). Small sample properties of tests on homogeneity in one-way anova and meta-analysis. Statistical Papers, 43(2), 197–235. doi:10.1007/s00362-002-0097-8
Hastings, C. (1955). Approximations for digital computers. Princeton University Press.
Haviland, M. G. (1990). Yates’s correction for continuity and the analysis of 2 × 2 contingency tables. Statistics in Medicine, 9(4), 363–367. doi:10.1002/sim.4780090403
Hawkes, A. G. (1982). Approximating the normal tail. The Statistician, 31(3), 231. doi:10.2307/2987989
Hawkins, R. P., & Dotson, V. A. (1975). Reliability scores that delude: An Alice in wonderland trip through the misleading characteristics of inter-observer agreement scores in interval recording. In E. Ramp & G. Semb (Eds.), Behavior analysis: Areas of research and application (pp. 359–376). Prentice Hall.
Hazen, A. (1914). Storage to be provided in impounding municipal water supply. Transactions of the American Society of Civil Engineers, 77(1), 1539–1640. doi:10.1061/taceat.0002563
Hedges, L. V. (1981). Distribution Theory for Glass’s Estimator of Effect Size and Related Estimators. Journal of Educational Statistics, 6(2), 107–128. doi:10.2307/1164588
Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. Academic Press.
Heip, C. (1974). A new index measuring evenness. Journal of the Marine Biological Association of the United Kingdom, 54(3), 555–557. doi:10.1017/S0025315400022736
Helmert, F. R. (1875). Über die Berechnung des wahrscheinlichten Fehlers aus einer endlichen Anzahl wahrer Beobachtungsfehler. Zeithschrift für Mathematik und Physik, 20, 300–303.
Helmert, F. R. (1876a). Die Genauigkeit der Formel von Peters zur Berechnung des wahrscheinlichen Beobachtungsfehlers director Beobachtungen gleicher Genauigkeit. Astronomische Nachrichten, 88(2096–97), 113–132.
Helmert, F. R. (1876b). Über die Wahrscheinlichkeit der Potenzsummen der Beobachtungsfehler und uber einige damit in Zusammenhang stehende Fragen. Zeithschrift für Mathematik und Physik, 21, 192–218.
Herkenhoff, L., & Fogli, J. (2013). Applied statistics for business and management using Microsoft Excel. New York, NY: Springer.
Hill, I. D. (1973). Algorithm AS 66: The normal integral. Applied Statistics, 22(3), 424–427. doi:10.2307/2346800
Hill, I. D., & Joyce, S. A. (1967a). Algorithm 304: Normal curve integral. Communications of the ACM, 10(6), 374–375. doi:10.1145/363332.363411
Hill, I. D., & Joyce, S. A. (1967b). Remarks on Algorithm 123: Real error function, ERF ( x ). Communications of the ACM, 10(6), 377. doi:10.1145/363332.365432
Hill, I. D., & Joyce, S. A. (1967c). Remarks on Algorithm 180: Error function—large X. Communications of the ACM, 10(6), 377. doi:10.1145/363332.365433
Hill, I. D., & Joyce, S. A. (1967d). Remarks on Algorithm 226: Normal distribution function. Communications of the ACM, 10(6), 377. doi:10.1145/363332.365436
Hill, I. D., & Joyce, S. A. (1967e). Remarks on Algorithm 272: Procedure for the normal distribution functions. Communications of the ACM, 10(6), 377. doi:10.1145/363332.365437
Hill, G. W. (1970). Algorithm 395: Students t-distribution. Communications of the ACM, 13(10), 617–619. doi:10.1145/355598.362775
Hill, G. W. (1981). Remark on algorithm 395. ACM Transactions on Mathematical Software, 7(2), 247–249. doi:10.1145/355945.355955
Hitchcock, D. B. (2009). Yates and contingency tables: 75 years later. Journal Électronique d’Histoire Des Probabilités et de La Statistique, 5(2), 1–14.
Hodges, J. L., & Lehmann, E. L. (1963). Estimates of location based on rank tests. The Annals of Mathematical Statistics, 34(2), 598–611. doi:10.1214/aoms/1177704172
Hoey, J. (2012). The two-way likelihood ratio (G) test and comparison to two-way chi squared test. 1–6. doi:10.48550/ARXIV.1206.4881
Hogg, R. V., & Ledolter, J. (1992). Applied statistics for engineers and physical scientists (2nd int.). Macmillan.
Hollander, M., & Wolfe, D. A. (1999). Nonparametric statistical methods (2nd ed.). Wiley.
Hollander, M., Wolfe, D. A., & Chicken, E. (2014). Nonparametric statistical methods (3rd ed.). John Wiley & Sons, Inc.
Holliday, J. D., Hu, C.-Y., & Willett, P. (2002). Grouping of coefficients for the calculation of inter-molecular similarity and dissimilarity using 2D fragment bit-strings. Combinatorial Chemistry & High Throughput Screening, 5(2), 155–166. doi:10.2174/1386207024607338
Holmgren, B. (1970). Remark on algorithm 304: Normal curve integral. Communications of the ACM, 13(10), 624. doi:10.1145/355598.362784
how2stats (Director). (2018, June 11). Welch’s F-test vs Brown-Forsythe F-test: Which Should You Use and When? https://youtu.be/jteKmatBgF8
Hubálek, Z. (1982). Coefficients of association and similarity, based on binary (presence-absence) data: An evaluation. Biological Reviews, 57(4), 669–689. doi:10.1111/j.1469-185X.1982.tb00376.x
Huizingh, E. (2007). Applied statistics with SPSS. London: SAGE.
Hurlbert, S. H. (1969). A coefficient of interspecific assciation. Ecology, 50(1), 1–9. doi:10.2307/1934657
Huynh, H., & Feldt, L. S. (1976). Estimation of the box correction for degrees of freedom from sample data in randomized block and split-plot designs. Journal of Educational Statistics, 1(1), 69–82. doi:10.2307/1164736
Hwang, J., & Yoon, Y. (2021). Data analytics and visualization in quality analysis using Tableau. CRC Press.
Hyndman, R. J., & Fan, Y. (1996). Sample quantiles in statistical packages. *The American Statistician, 50*(4), 361–365. doi:10.2307/2684934
I
Ibbetson, D. (1963a). Algorithm 209: Gauss. Communications of the ACM, 6(10), 616. doi:10.1145/367651.367664
Ibbetson, D. (1963b). Remark on algorithm 123: ERF. Communications of the ACM, 6(10), 618. doi:10.1145/367651.367671
IBM. (2021). IBM SPSS Statistics Algorithms. IBM.
Iman, R., & Davenport, J. (1980). Approximations of the critical region of the Friedman statistic. Communications in Statistics-Theory and Methods, 9, 571–595.
Iman, R. L. (1974). Use of a t-statistic as an approximation to the exact distribution of the Wilcoxon signed ranks test statistic. Communications in Statistics, 3(8), 795–806. doi:10.1080/03610927408827178
Irwin, J. O. (1935). Tests of significance for differences between percentages based on small numbers. Metron, 12(2), 83–94.
J
Jaccard, P. (1901). Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin Del La Société Vaudoise Des Sciences Naturelles, 37, 547–579.
Jaccard, P. (1912). The distribution of the flora in the alpine zone. The New Phytologist, 11(2), 37–50.
Jackson, D. A., Somers, K. M., & Harvey, H. H. (1989). Similarity coefficients: Measures of co-occurrence and association or simply measures of occurrence? The American Naturalist, 133(3), 436–453. doi:10.1086/284927
Jacobs, P., & Viechtbauer, W. (2017). Estimation of the biserial correlation and its sampling variance for use in meta‐analysis. Research Synthesis Methods, 8(2), 161–180. doi:10.1002/jrsm.1218
James, G. S. (1951). The comparison of several groups of observations when the ratios of the population variances are unknown. Biometrika, 38(3–4), 324–329. doi:10.1093/biomet/38.3-4.324
Jamsa, K. (2020). Introduction to data mining and analytics: With machine learning in R and Python. Jones & Bartlett Learning.
jmp. (n.d.). Mosaic Plot. Jmp: Statistics Knowledge Portal. Retrieved February 4, 2023, from https://www.jmp.com/en_us/statistics-knowledge-portal/exploratory-data-analysis/mosaic-plot.html
Joarder, A. H., & Firozzaman, M. (2001). Quartiles for discrete data. Teaching Statistics, 23(3), 86–89. doi:10.1111/1467-9639.00063
jochen. (2016, April 16). normal approximation to the binomial distribution: Why np>5? [Forum post]. Cross Validated. https://stats.stackexchange.com/q/207671/190640
Johnson, N. L., & Kotz, S. (1972). Continuous multivariate distributions. Wiley.
Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241–254. doi:10.1007/BF02289588
Johnston, J. E., Berry, K. J., & Mielke, P. W. (2006). Measures of effect size for chi-squared and likelihood-ratio goodness-of-fit tests. Perceptual and Motor Skills, 103(2), 412–414. doi:10.2466/pms.103.2.412-414
Joiner. (1995). Pareto charts: Plain & simple. Joiner Associates.
JonB. (2015, October 14). Effect size of a binomial test and its relation to other measures of effect size. Retrieved from https://stats.stackexchange.com/q/176856
Jones, J. A., & Harrold, M. J. (2005). Empirical evaluation of the tarantula automatic fault-localization technique. Proceedings of the 20th IEEE/ACM International Conference on Automated Software Engineering, 273–282. doi:10.1145/1101908.1101949
Jones, K. (2014, June 5). How do you interpret the odds ratio (OR)? ResearchGate. https://www.researchgate.net/post/How_do_you_interpret_the_odds_ratio_OR
K
Kader, G. D., & Perry, M. (2007). Variability for categorical variables. Journal of Statistics Education, 15(2), 1–17.
Kaiser, H. F. (1968). A measure of the population quality of legislative apportionment. American Political Science Review, 62(1), 208–215. doi:10.2307/1953335
Kelley, T. L. (1935). An Unbiased Correlation Ratio Measure. Proceedings of the National Academy of Sciences of the United States of America, 21(9), 554–559.
Kelley, K., & Preacher, K. J. (2012). On effect size. Psychological Methods, 17(2), 137–152. doi:10.1037/a0028086
Kemp, S. M., & Kemp, S. (2004). Business statistics demystified. McGraw-Hill.
Kendall, M. G., & Smith, B. B. (1939). The problem of m rankings. The Annals of Mathematical Statistics, 10(3), 275–287. doi:10.1214/aoms/1177732186
Kendall, M. G. (1940). Note on the distribution of quantiles for large samples. Supplement to the Journal of the Royal Statistical Society, 7(1), 83–85.
Kenney, J. F. (1939). Mathematics of statistics; Part one. London: Chapman & Hall.
Kenney, J. F., & Keeping, E. S. (1954). Mathematics of statistics; Part one (3rd ed.). New York: D. Van Nostrand Company.
Kent, R. N., & Foster, S. L. (1977). Direct observational procedures: Methodological issues in naturalistic settings. In A. R. Ciminero, K. S. Calhoun, & H. E. Adams (Eds.), Handbook of behavioral assessment (pp. 279–328). New York : Wiley. http://archive.org/details/handbookofbehavi00cimi
Kerby, D. S. (2014). The simple difference formula: An approach to teaching nonparametric correlation. Comprehensive Psychology, 3, 1–9. doi:10.2466/11.IT.3.1
Kerridge, D. F., & Cook, G. W. (1976). Yet another series for the normal integral. Biometrika, 63(2), 401–407. doi:10.1093/biomet/63.2.401
Kiani, M., Panaretos, J., Psarakis, S., & Saleem, M. (2008). Approximations to the normal distribution function and an extended table for the mean range of the normal variables. In MPRA Paper (No. 68045; MPRA Paper, pp. 57–72). University Library of Munich, Germany. https://ideas.repec.org/p/pra/mprapa/68045.html
Kieffer, K. M. (2002). On analyzing repeated measures designs with both univariate and multivariate methods: A primer with examples. Multiple Linear Regression Viewpoints, 28(1), 1–17.
King, B. M., & Minium, E. W. (2008). Statistical reasoning in the behavioral sciences (5th ed.). Hoboken, NJ. John Wiley & Sons, Inc.
Kirk, D. B. (1973). On the numerical approximation of the bivariate normal (tetrachoric) correlation coefficient. Psychometrika, 38(2), 259–268. doi:10.1007/BF02291118
Knuth, K. H. (2019). Optimal data-based binning for histograms and histogram-based probability density models. Digital Signal Processing, 95, 1–30. doi:10.1016/j.dsp.2019.102581
Kokoska, S., & Nevison, C. (1992). Statistical tables and formulae (Nachdr., corrected reprint). Springer.
Kozak, A., Kozak, R. A., Staudhammer, C. L., & Watts, S. B. (2008). Introductory probability and statistics: Applications for forestry and natural sciences. CABI.
Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583–621. doi:10.1080/01621459.1952.10483441
Kuder, G. F., & Richardson, M. W. (1937). The theory of the estimation of test reliability. Psychometrika, 2(3), 151–160. doi:10.1007/BF02288391
Kulczynski, S. (1927). Die Pflanzenassoziationen der Pieninen. Bulletin International de l’Academie Polonaise Des Sciences et Des Lettres, Classe Des Sciences Mathematiques et Naturelles, B (Sciences Naturelles), II, 57–203.
Kyd, C. (2012, April 5). Good Examples of Bad Charts: Chart Junk from a Surprising Source. ExcelUser. http://exceluser.com/blog/1133/good-examples-of-bad-charts-chart-junk-from-a-surprising-source.html
L
Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4. doi:10.3389/fpsyg.2013.00863
Lakens, D. (2015, June 8). Why you should use omega-squared instead of eta-squared [blog]. Retrieved April 2, 2018, from http://daniellakens.blogspot.com
Lane, D. M. (n.d.). Histograms. In Introduction to statistics (online, pp. 82–85). Rice University. https://onlinestatbook.com/Online_Statistics_Education.pdf
Larntz, K. (1978). Small-sample comparisons of exact levels for chi-squared goodness-of-fit statistics. Journal of the American Statistical Association, 73(362), 253–263. doi:10.1080/01621459.1978.10481567
Larson, R., & Farber, E. (2014). Elementary statistics: picturing the world (6th ed.). Boston: Pearson.
Lawal, H. B. (1984). Comparisons of the X 2 , Y 2 , Freeman-Tukey and Williams’s improved G 2 test statistics in small samples of one-way multinomials. Biometrika, 71(2), 415–418. doi:10.2307/2336263
Levene, H. (1960). Robust tests for equality of variances. In I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow, & H. B. Mann (Eds.), Contributions to probability and statistics: Essays in honor of Harold Hotelling (pp. 278–292). Stanford University Press.
Levine, T. R., & Hullett, C. R. (2002). Eta Squared, Partial Eta Squared, and Misreporting of Effect Size in Communication Research. Human Communication Research, 28(4), 612–625. doi:10.1111/j.1468-2958.2002.tb00828.x
Lew, R. A. (1981). An approximation to the cumulative normal distribution with simple coefficients. Applied Statistics, 30(3), 299–301. doi:10.2307/2346355
Li, B., & Babu, G. J. (2019). A graduate course on statistical inference. Springer.
Li, B., & Moor, B. D. (1999). A corrected normal approximation for the Student’s t distribution. Computational Statistics & Data Analysis, 29(2), 213–216. doi:10.1016/S0167-9473(98)00065-6
Li, H., & Johnson, T. (2014). Wilcoxon’s signed‐rank statistic: What null hypothesis and why it matters. Pharmaceutical Statistics, 13(5), 281–285. doi:10.1002/pst.1628
Lin, J.-T. (1988). Alternatives to Hamakers’ approximations to the cumlative normal distribution and its inverse. The Statistician, 37(4/5), 413–414. doi:10.2307/2348766
Lin, J.-T. (1989). Approximating the normal tail probability and its inverse for use on a pocket calculator. Journal of the Royal Statistical Society. Series C (Applied Statistics), 38(1), 69–70. doi:10.2307/2347681
Lin, J.-T. (1990). A simpler logistic approximation to the normal tail probability and its inverse. Applied Statistics, 39(2), 255. doi:10.2307/2347764
Lin, J.-T. (1995). A simple approximation for the bivariate normal integral. Probability in the Engineering and Informational Sciences, 9(2), 317–321. doi:10.1017/S0269964800003880
Ling, M. H. T. (2010). COPADS, I: Distance coefficients between two lists or sets. The Python Papers Source Codes, 2(2), 1–31.
Liu, H., Hussain, F., Tan, C. L., & Dash, M. (2002). Discretization: An enabling technique. Data Mining and Knowledge Discovery, 6(4), 393–423. doi:10.1023/A:1016304305535
Loader, C. (2002). Fast and accurate computation of binomial probabilities.pdf. Lucent Technologies. https://www.r-project.org/doc/reports/CLoader-dbinom-2002.pdf
Loevinger, J. (1947). A systematic approach to the construction and evaluation of tests of ability. Psychological Monographs, 61(4), i–49. doi:10.1037/h0093565
Löffler, A. (1983). Über eine Partition der nat. Zahlen und ihr Anwendung beim U-Test. Wiss. Z. Univ. Halle, XXXII, 87–89.
Lohaka, H. O. (2007). Making a Grouped-Data Frequency Table: Development and Examination of the Iteration Algorithm [Doctoral dissertation, Ohio University]. https://etd.ohiolink.edu
Lohninger, H. (n.d.). Quartile. Fundamentals of Statistics. Retrieved April 7, 2023, from http://www.statistics4u.com/fundstat_eng/cc_quartile.html
Long, M. A., Berry, K. J., & Mielke, P. W. (2009). Tetrachoric correlation: A permutation alternative. Educational and Psychological Measurement, 69(3), 429–437. doi:10.1177/0013164408324463
Louis, P., Núñez, M., & Xefteris, D. (2023). Trimming extreme reports in preference aggregation. Games and Economic Behavior, 137, 116–151. doi:10.1016/j.geb.2022.11.003
Lovakov, A., & Agadullina, E. R. (2021). Empirically derived guidelines for effect size interpretation in social psychology. European Journal of Social Psychology, 51(3), 485–504. doi:10.1002/ejsp.2752
Lovitt, W. V., & Holtzclaw, H. F. (1931). Statistics. Prentice Hall.
Lumley, T., Diehr, P., Emerson, S., & Chen, L. (2002). The importance of the normality assumption in large public health data sets. Annual Review of Public Health, 23, 151–169. doi:10.1146/annurev.publhealth.23.100901.140546
Lüroth, J. (1876). Vergleichung von zwei Werthen des wahrscheinlichen Fehlers. Astronomische Nachrichten, 87(14), 209–220. doi:10.1002/asna.18760871402
Luo, D., Wan, X., Liu, J., & Tong, T. (2018). Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Statistical Methods in Medical Research, 27(6), 1785–1805. doi:10.1177/0962280216669183
M
Mangiafico, S. S. (2016). Summary and analysis of extension program evaluation in R (1.15.0). New Brunswick, NJ: Rutger Cooperative Extension.
Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics, 18(1), 50–60. doi:10.1214/aoms/1177730491
Mann, P. S. (1991). Introductory statistics. New York: John Wiley & Sons.
Mann, P. S. (2010). Introductory statistics (7th ed.). John Wiley & Sons.
Mann, P. S. (2013). Introductory statistics (8th Int.). Hoboken, N.J.: John Wiley & Sons.
Mann, P. S. (2024). Introductory statistics (10th ed.). Hoboken, N.J.: John Wiley & Sons.
Maple. (n.d.). Quantile. Retrieved June 15, 2023, from https://www.maplesoft.com/support/help/maple/view.aspx?path=Statistics%2fQuantile
Marsaglia, G. (2004). Evaluating the normal distribution. Journal of Statistical Software, 11(4). doi:10.18637/jss.v011.i04
Matić, I., Radoičić, R., & Stefanica, D. (2018). A sharp Pólya-based approximation to the normal cumulative distribution function. Applied Mathematics and Computation, 322, 111–122. doi:10.1016/j.amc.2017.10.019
Maxwell, A. E., & Pilliner, A. E. (1968). Deriving coefficients of reliability and agreement for ratings. The British Journal of Mathematical and Statistical Psychology, 21(1), 105–116. doi:10.1111/j.2044-8317.1968.tb00401.x
Maxwell, A. E. (1970). Comparing the classification of subjects by two independent judges. The British Journal of Psychiatry, 116(535), 651–655. doi:10.1192/bjp.116.535.651
Maxwell, S. E., & Delaney, H. D. (1990). Designing experiments and analyzing data: A model comparison perspective. Belmont, CA, US: Wadsworth/Thomson Learning.
McAlister, D. (1879). The law of the geometric mean. *Proceedings of the Royal Society of London, 29*(196–199), 367–376. doi:10.1098/rspl.1879.0061
McConnaughey, B. H. (1964). The determination and analysis of plankton communities. Marine Research, 7, 1–40.
McConnell, C. R. (1990). Letters to the Editor: Pocket-computer approximation for areas under the standard normal curve. The American Statistician, 44(1), 63–63. doi:10.1080/00031305.1990.10475696
McCornack, R. L. (1965). Extended tables of the Wilcoxon matched pair signed rank statistic. Journal of the American Statistical Association, 60(311), 864–871. doi:10.2307/2283253
McDonald, J. H. (2014). Handbook of Biological Statistics (3rd ed.). Baltimore: Sparky House Publishing.
McDonald, J. H. (2022, April 24). Small numbers in chi-square and G–tests. Statistics LibreTexts. https://stats.libretexts.org/Bookshelves/Applied_Statistics/Book%3A_Biological_Statistics_(McDonald)/02%3A_Tests_for_Nominal_Variables/2.08%3A_Small_Numbers_in_Chi-Square_and_GTests
McGraw, K. O., & Wong, S. P. (1992). A common language effect size statistic. Psychological Bulletin, 111(2), 361–365. doi:10.1037/0033-2909.111.2.361
McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12(2), 153–157. doi:10.1007/BF02295996
Mee, R. W., & Owen, D. B. (1983). A simple approximation for bivariate normal probabilities. Journal of Quality Technology, 15(2), 72–75. doi:10.1080/00224065.1983.11978848
Mehrotra, D. V. (1997). Improving the Brown-Forsythe solution to the generalized Behrens-Fisher problem. Communications in Statistics - Simulation and Computation, 26(3), 1139–1145. doi:10.1080/03610919708813431
Mehta, C. R., Patel, N. R., & Senchaudhuri, P. (1988). Importance sampling for estimating exact probabilities in permutational inference. Journal of the American Statistical Association, 83(404), 999–1005. doi:10.1080/01621459.1988.10478691
Mendenhall, W., & Sincich, T. (1992). Statistics for engineering and the sciences (3rd ed.). Dellen Publishing Company.
Meyer, C. (2013). Recursive numerical evaluation of the cumulative bivariate normal distribution. Journal of Statistical Software, 52(10), 1–14. doi:10.18637/jss.v052.i10
Mezui-Mbeng, P. (2015). A note on Cochran test for homogeneity in two ways ANOVA and meta-analysis. Open Journal of Statistics, 5(7), 787–796. doi:10.4236/ojs.2015.57078
Michael, E. L. (1920). Marine Ecology and the coefficient of association: A plea in behalf of quantitative biology. Journal of Ecology, 8(1), 54–59. doi:10.2307/2255213
Milton, R. C., & Hotchkiss, R. (1969). Computer evaluation of the normal and inverse normal distribution functions. Technometrics, 11(4), 817–822. doi:10.1080/00401706.1969.10490740
Monahan, J. F. (1984). Algorithm 616: Fast computation of the Hodges-Lehmann location estimator. ACM Transactions on Mathematical Software, 10(3), 265–270. doi:10.1145/1271.319414
Mood, A. M. (1950). Introduction to the theory of statistics. New York: McGraw-Hill.
Moore, D. S., & McCabe, G. P. (1989). Introduction to the practice of statistics. W.H. Freeman.
Moore, D. S., McCabe, G. P., & Craig, B. A. (2009). Introduction to the practice of statistics (6th ed.). W.H. Freeman.
Moran, P. A. P. (1980). Calculation of the normal distribution function. Biometrika, 67(3), 675–676. doi:10.1093/biomet/67.3.675
Moskowitz, H., & Tsai, H.-T. (1989). An error-bounded polynomial approximation for bivariate normal probabilities. Communications in Statistics - Simulation and Computation, 18(4), 1421–1437. doi:10.1080/03610918908812831
Mountford, M. D. (1962). An index of similarity and its application to classification problems. In P. W. Murphy & D. Phil (Eds.), Progress in soil zoology (pp. 43–50). Butterworths.
Munzel, U., & Brunner, E. (2002). An exact paired rank test. Biometrical Journal, 44(5), 584. doi:10.1002/1521-4036(200207)44:5<584::AID-BIMJ584>3.0.CO;2-9
Myers, L. (1998). Comparability of the james’ second-order approximation test and the alexander and govern A statistic for non-normal heteroscedastic data. Journal of Statistical Computation and Simulation, 60(3), 207–222. doi:10.1080/00949659808811888
N
NCSS. (n.d.-a). Tests for one proportion. In PASS Sample Size Software (pp. 100-1-100–132). Retrieved from https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/PASS/Tests_for_One_Proportion.pdf
NCSS. (n.d.-b). Tests for two proportions using effect size. In PASS Sample Size Software (pp. 199-1-199–10). Retrieved from https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/PASS/Tests_for_Two_Proportions_using_Effect_Size.pdf
Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, 76(10), 5269–5273. doi:10.1073/pnas.76.10.5269
Nelson, P. R., Coffin, M., & Copeland, K. A. F. (2003). Introductory statistics for engineering experimentation. Amsterdam, NL: Elsevier Academic Press.
Neubert, K., & Brunner, E. (2007). A studentized permutation test for the non-parametric Behrens–Fisher problem. Computational Statistics & Data Analysis, 51(10), 5192–5204. doi:10.1016/j.csda.2006.05.024
Newbold, P., Carlson, W. L., & Thorne, B. (2013). Statistics for business and economics (8th ed). Pearson.
Neyman, J. (1949). Contribution to the theory of the chi-square test. Berkeley Symposium on Math. Stat, and Prob, 239–273. doi:10.1525/9780520327016-030
Nikoloulopoulos, A. (2020, March 23). Approximation of bivariate standard normal distribution. R Documentation. https://www.rdocumentation.org/packages/weightedScores/versions/0.9.5.3/topics/approxbvncdf
Norton, R. M. (1989). Pocket-calculator approximation for areas under the standard normal curve. The American Statistician, 43(1), 24. doi:10.2307/2685163
numpy. (n.d.). Numpy.percentile. Retrieved June 15, 2023, from https://numpy.org/doc/stable/reference/generated/numpy.percentile.html
O
Ochiai, A. (1957). Zoogeographical studies on the soleoid fishes found in Japan and its neighbouring regions-I. Nippon Suisan Gakkaishi, 22(9), 522–525. doi:10.2331/suisan.22.522
Oresme, N. (1486). Tractatus de latitudinibus formarum. (B. Pelacani da Parma, Ed.). Padua: Mathaeus Cerdonis.
Otsuka, Y. (1936). The faunal character of the Japanese Pleistocene marine Mollusca, as evidence of the climate having become colder during the Pleistocene in Japan. Bulletin of the Biogeographical Society of Japan, 6(16), 165–170.
Owen, D. B. (1956). Tables for computing bivariate normal probabilities. The Annals of Mathematical Statistics, 27(4), 1075–1090. doi:10.1214/aoms/1177728074
Owen, D. B. (1957). The bivariate normal probability distribution (pp. 1–136). Office of Technical Services, Department of Commerce.
Özdemir, A. F., & Kurt, S. (2006). One way fixed effect analysis of variance under variance heterogeneity and a solution proposal. Selçuk Journal of Applied Mathematics, 7(2), 81–90.
P
Pacioli, L. (1523). *Summa de arithmetica geometria proportioni: Et proportionalita*. Paganino de Paganini.
Page, E. (1977). Approximations to the cumulative normal function and its inverse for use on a pocket calculator. Applied Statistics, 26(1), 75. doi:10.2307/2346872
Pagano, R. R. (2010). Understanding statistics in the behavioral sciences (9th ed.). Wadsworth Cengage Learning.
Pagano, M., & Tritchler, D. (1983). On obtaining permutation distributions in polynomial time. Journal of the American Statistical Association, 78(382), 435–440. doi:10.1080/01621459.1983.10477990
pandas. (n.d.). Pandas.DataFrame.quantile. Retrieved June 15, 2023, from https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.quantile.html
Pareto, V. (1896). Cours d’économie politique (Vol. 1). Lausanne.
Parzen, E. (1979). Nonparametric statistical data modeling. Journal of the American Statistical Association, 74(365), 105–121. doi:10.1080/01621459.1979.10481621
Parzen, E. (1980). Data modeling using quantile and density-quantile functions. Institute of Statistics, Texas A&M University.
Patefield, M., & Tandy, D. (2000). Fast and accurate calculation of Owen’s T function. Journal of Statistical Software, 5(5), 1–25. doi:10.18637/jss.v005.i05
Patry, J., & Keller, J. (1964). Zur berechnung des fehlerintegrals. Numerische Mathematik, 6(1), 89–97. doi:10.1007/BF01386058
Pearson, E. S. (1947). The choice of statistical tests illustrated on the Interpretation of data classed in a 2 × 2 table. Biometrika, 34(1/2), 139–167. doi:10.2307/2332518
Pearson, K. (1894). Contributions to the mathematical theory of evolution. Philosophical Transactions of the Royal Society of London. A, 185, 71–110. doi:10.1098/rsta.1894.0003
Pearson, K. (1895). Contributions to the mathematical theory of evolution. II. Skew variation in homogeneous material. Philosophical Transactions of the Royal Society of London. (A.), 186, 343–414. doi:10.1098/rsta.1895.0010
Pearson, K. (1896). Mathematical contributions to the theory of evolution. III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London. (A.), 1896, 253–318.
Pearson, K. (1900). Mathematical Contributions to the Theory of Evolution. VII. On the Correlation of Characters not Quantitatively Measurable. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 195, 1–405.
Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine Series 5, 50(302), 157–175. doi:10.1080/14786440009463897
Pearson, K. (1904). Contributions to the Mathematical Theory of Evolution. XIII. On the theory of contingency and its relation to association and normal correlation. London: Dulau and Co.
Pearson, K. (1909). On a new method of determining correlation between a measured character A, and a character B. Biometrika, 7(1/2), 96–105. doi:10.2307/2345365
Pearson, K., & Heron, D. (1913). On theories of association. Biometrika, 9(1/2), 159–315. doi:10.2307/2331805
Peck, R., & Devore, J. L. (2012). Statistics: the exploration and analysis of data (7th ed). Boston: Brooks/Cole.
Peirce, C. S. (1884). The numerical measure of the success of predictions. Science, 4(93), 453–454. doi:10.1126/science.ns-4.93.453-a
Pereira, D. G., Afonso, A., & Medeiros, F. M. (2015). Overview of Friedman’s test and post-hoc analysis. Communications in Statistics - Simulation and Computation, 44(10), 2636–2653. doi:10.1080/03610918.2014.931971
Perez, S. (2009, August 10). 10 Ways to Archive Your Tweets. ReadWrite. http://readwrite.com/2009/08/10/10_ways_to_archive_your_tweets
Peró-Cebollero, M., & Guàrdia-Olmos, J. (2013). The adequacy of different robust statistical tests in comparing two independent groups. Psicológica, 34, 407–424.
Petry, R. G., & Friesen, B. (2012). STAT 100; Elementary Statistics for Applications. Campion College. http://amberlin.asuscomm.com/university_of_regina_copies/stat_100_lecture_notes_v2/intro_stats_v2.pdf
Pielou, E. C. (1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131–144. doi:10.1016/0022-5193(66)90013-0
Pitts, C. E. (1971). Introduction to educational psychology: An operant conditioning approach. New York: Crowell.
Playfair, W. (1786). The commercial and political atlas. London: Debrett; Robinson; and Sewell.
Pólya, G. (1949). Remarks on computing the probability integral in one and two dimensions. Berkeley Symposium on Mathematical Statistics and Probability, 1, 63–79.
Porkess, R. (1988). Dictionary of statistics. Collins.
Porkess, R. (1991). The Harper Collins dictionary of statistics. New York, N.Y: Harper Perennial.
Pratt, J. W. (1959). Remarks on Zeros and Ties in the Wilcoxon Signed Rank Procedures. Journal of the American Statistical Association, 54(287), 655–667. doi:10.1080/01621459.1959.10501526
Project Management Institute (Ed.). (2013). A guide to the project management body of knowledge (5th ed.). Project Management Institute, Inc.
Python. (n.d.). statistics: Median. Python Documentation. Retrieved June 19, 2023, from https://docs.python.org/3/library/statistics.html
Q
Quine, M. P., & Robinson, J. (1985). Efficiencies of chi-square and likelihood Ratio goodness-of-fit tests. The Annals of Statistics, 13(2), 727–742. doi:10.1214/aos/1176349550
R
Raab, D. H., & Green, E. H. (1961). A cosine approximation to the normal distribution. Psychometrika, 26(4), 447–450. doi:10.1007/BF02289774
Rana, S., Doulah, Md. S., Midi, H., & Imon, A. (2012). Decile mean: A new robust measure of central tendency. Chiang Mai Journal of Science, 39, 478–485.
Rea, L. M., & Parker, R. A. (1992). Designing and conducting survey research: a comprehensive guide. San Francisco: Jossey-Bass Publishers.
Read, C. B. (1993). Freeman-Tukey chi-squared goodness-of-fit statistics. Statistics & Probability Letters, 18(4), 271–278. doi:10.1016/0167-7152(93)90015-B
Rényi, A. (1961). On measures of entropy and information. Contributions to the Theory of Statistics, 1, 547–562.
Rice, J. A. (2006). Mathematical Statistics and Data Analysis. Belmont, CA: Cengage Learning.
Rogers, D. J., & Tanimoto, T. T. (1960). A computer program for classifying plants. Science, 132(3434), 1115–1118. doi:10.1126/science.132.3434.1115
Rogot, E., & Goldberg, I. D. (1966). A proposed index for measuring agreement in test-retest studies. Journal of Chronic Diseases, 19(9), 991–1006. doi:10.1016/0021-9681(66)90032-4
Rosenthal, J. A. (1996). Qualitative descriptors of strength of association and effect size. Journal of Social Service Research, 21(4), 37–59. doi:10.1300/J079v21n04_02
Rosenthal, R. (1991). Meta-analytic procedures for social research (Rev. ed). Newbury Park: Sage Publications.
Rosnow, R. L., & Rosenthal, R. (2003). Effect sizes for experimenting psychologists. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 57(3), 221–237. doi:10.1037/h0087427
Russell, P. F., & Rao, T. R. (1940). On habitat and association of species of anopheline larvae in south-eastern Madras. Journal of the Malaria Institute of India, 3(1), 153–178.
Ruxton, G. D. (2006). The unequal variance t-test is an underused alternative to Student’s t-test and the Mann–Whitney U test. Behavioral Ecology, 17(4), 688–690. doi:10.1093/beheco/ark016
S
Sá, J. P. M. de. (2007). Applied statistics: Using SPSS, Statistica, MATLAB, and R (2nd ed.). Springer.
Samuels, M. L., Witmer, J. A., & Schaffner, A. (2012). Statistics for the life sciences (4th ed). Pearson Education.
SAS. (1990). *SAS procedures guide: Version 6* (3rd ed.). SAS Institute.
Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components. Biometrics Bulletin, 2(6), 110. doi:10.2307/3002019
Sawilowsky, S. (2009). New effect size rules of thumb. Theoretical and Behavioral Foundations of Education Faculty Publications, 8(2), 597–599.
scipy. (n.d.). Scipy.stats.wilcoxon. Scipy. https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html
Schlag, K. H. (2015). Who gives direction to statistical testing? Best practice meets mathematically correct tests (SSRN Scholarly Paper 2660977). Social Science Research Network. doi:10.2139/ssrn.2660977
Schneider, P. J., & Penfield, D. A. (1997). Alexander and Govern’s approximation: Providing an alternative to ANOVA under variance heterogeneity. The Journal of Experimental Education, 65(3), 271–286. doi:10.1080/00220973.1997.9943459
Schucany, W. R., & Gray, H. L. (1968). A new approximation related to the error function. Mathematics of Computation, 22(101), 201–202. doi:10.1090/S0025-5718-68-99887-6
Schüürhuis, S., Konietschke, F., & Brunner, E. (2025). A new approach to the Nonparametric Behrens-Fisher problem with compatible confidence intervals (arXiv:2504.01796). arXiv. doi:10.48550/arXiv.2504.01796
Schwabish, J. (2021). Better data visualizations: A guide for scholars, researchers, and wonks. Columbia University Press.
Scott, A. J., & Smith, T. M. F. (1971). Interval estimates for linear combinations of means. Applied Statistics, 20(3), 276–285. doi:10.2307/2346757
Scott, D. W. (1979). On optimal and data-based histograms. Biometrika, 66(3), 605–610. doi:10.1093/biomet/66.3.605
Scott, W. A. (1955). Reliability of content analysis: The case of nominal scale coding. The Public Opinion Quarterly, 19(3), 321–325.
Serlin, R. C., Carr, J., & Marascuilo, L. A. (1982). A measure of association for selected nonparametric procedures. Psychological Bulletin, 92(3), 786–790. doi:10.1037/0033-2909.92.3.786
Shah, A. K. (1985). A simpler approximation for areas under the standard normal curve. The American Statistician, 39(1), 80–80. doi:10.1080/00031305.1985.10479396
Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. The university of Illinois press.
Shchigolev, V. K. (2020). A simple approximation for the normal distribution function via variational iteration method. MathLab, 6, 45–52.
Sheldon, A. L. (1969). Equitability indices: Dependence on the species count. Ecology, 50(3), 466–467. doi:10.2307/1933900
Shimazaki, H., & Shinomoto, S. (2007). A Method for Selecting the Bin Size of a Time Histogram. Neural Computation, 19(6), 1503–1527. doi:10.1162/neco.2007.19.6.1503
Shore, H. (2005). Accurate RMM-based approximations for the CDF of the normal distribution. Communications in Statistics - Theory and Methods, 34(3), 507–513. doi:10.1081/STA-200052102
Siegel, A. F., & Morgan, C. J. (1996). Statistics and data analysis: An introduction (2nd ed.). J. Wiley.
SigMaxl. (n.d.). One Sample Wilcoxon Sign Test Exact. Retrieved August 30, 2020, from https://www.sigmaxl.com/OneSampleSignWilcoxonExact.shtml
Simone. (2017, April 13). How do you calculate the effect size of one-sample Wilcoxon signed-rank test? Cross Validated. Retrieved December 23, 2018, from https://stats.stackexchange.com/q/234454
Simpson, E. H. (1949). Measurement of diversity. Nature, 163(4148), Article 4148. doi:10.1038/163688a0
Simpson, G. G. (1943). Mammals and the nature of continents. American Journal of Science, 241(1), 1–31. doi:10.2475/ajs.241.1.1
Simpson, G. G. (1960). Notes on the measurement of faunal resemblance. American Journal of Science, 258-A, 300–311.
Singh, G. (2009). Map work and practical geography (4th ed). New Delhi: Vikas Publishing House Pvt Ltd.
Singh, D. (2013). A study on the use of non-parametric tests for experimentation with cluster analysis. International Journal of Engineering and Management Research, 3(6), 64–72.
Siraj-Ud-Doulah, M. (2018). Alternative measures of standard deviation coefficient of variation and standard error. International Journal of Statistics and Applications, 8(6), 309–315. doi:10.5923/j.statistics.20180806.04
slideplayer. (2015, June 13). Using statistics to make inferences 6.
Smith, B., & Wilson, J. B. (1996). A consumer’s guide to evenness indices. Oikos, 76(1), 70–82. doi:10.2307/3545749
Smits, G. J. (1981). A FORTRAN IV function to compute the probability of a standard normal deviate. Behavior Research Methods & Instrumentation, 13(5), 701–701. doi:10.3758/BF03202099
Snedecor, G. W. (1940). Statistical methods applied to experiments in agriculture and biology (3rd ed.). The Iowa State College Press.
Sokal, P. H. A., & Sneath, R. R. (1963). Principles of numerical taxonomy. W.H. Freeman and Company.
Sokal, R., & Michener, C. (1958). A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin. https://www.semanticscholar.org/paper/A-statistical-method-for-evaluating-systematic-Sokal-Michener/0db093335bc3b9445fa5a1a5526d634921d7b59a
Soper, H. E. (1914). On the probable error of the bi-serial expression for the correlation coefficient. Biometrika, 10(2/3), 384–390. doi:10.2307/2331789
Soranzo, A., & Epure, E. (2014). Very simply explicitly invertible approximations of normal cumulative and normal quantile function. Applied Mathematical Sciences, 8, 4323–4341. doi:10.12988/ams.2014.45338
Sorgenfrei, T. (1958). Molluscan assemblages from the marine middle miocene of south Jutland and their Environments. Vol. I. Danmarks Geologiske Undersøgelse II. Række, 79, 1–355. doi:10.34194/raekke2.v79.6868
Spear, M. E. (1952). Charting statistics. McGraw-Hill.
Spearman, C. (1904). The proof and measurement of association between two things. The American Journal of Psychology, 15(1), 72–101.
Spiegel, M. R., & Stephens, L. J. (2008). Schaum’s outline of theory and problems of statistics (4th ed.). New York: McGraw-Hill.
Srivastava, T. N., & Rego, S. (2011). Business research methodology. New Delhi: Tata McGraw-Hill.
Steen, N. M., Byrne, G. D., & Gelbard, E. M. (1969). Gaussian quadratures for the integrals ₀^{∞}𝑒𝑥𝑝(-𝑥²)𝑓(𝑥)𝑑𝑥 and ₀^{𝑏}𝑒𝑥𝑝(-𝑥²)𝑓(𝑥)𝑑𝑥. Mathematics of Computation, 23(107), 661–671. doi:10.1090/S0025-5718-1969-0247744-3
Stevens, J. P. (2009). Applied multivariate statistics for the social sciences (5th ed.). New York, NY: Routledge.
Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103(2684), 677–680. doi:10.1126/science.103.2684.677
Stiles, H. E. (1961). The association factor in information retrieval. Journal of the ACM, 8(2), 271–279. doi:10.1145/321062.321074
Stone, C. J. (1984). An asymptotically optimal window selection rule for kernel density estimates. The Annals of Statistics, 12(4), 1285–1297.
Strecok, A. J. (1968). On the calculation of the inverse of the error function. Mathematics of Computation, 22(101), 144–158. doi:10.2307/2004772
Streitberg, B., & Röhmel, J. (1987). Exakte Verteilungen für Rang-und Randomisierungstests im allgemeinen c-Stichprobenproblem. EDV in Medizin und Biologie, 18(1), 12–19.
Stuart, A. (1955). A test for homogeneity of the marginal distributions in a two-way classification. Biometrika, 42(3/4), 412–416. doi:10.2307/2333387
Student. (1908). The probable error of a mean. Biometrika, 6(1), 1-25. doi:10.2307/2331554
Sturges, H. A. (1926). The Choice of a Class Interval. Journal of the American Statistical Association, 21(153), 65–66. doi:10.1080/01621459.1926.10502161
T
Tanimoto, T. T. (1958). An elementary mathematical theory of classification and prediction (PB167360). International Business Machines Corp., New York.
Tarwid, K. (1960). Szacowanie zbieinosci nisz ekologicznych gatunkow droga oceny prawdopodobienstwa spotykania sie ich w polowach. Ekologia Polska, 6, 115–130.
Tastle, W. J., & Wierman, M. J. (2007). Consensus and dissention: A measure of ordinal dispersion. International Journal of Approximate Reasoning, 45(3), 531–545. doi:10.1016/j.ijar.2006.06.024
Tastle, W. J., Wierman, M. J., & Rex Dumdum, U. (2005). Ranking ordinal scales using the consensus measure. Issues in Information Systems, 6(2), 96–102.
Tate, R. F. (1954). Correlation between a discrete and a continuous variable. Point-biserial correlation. The Annals of Mathematical Statistics, 25(3), 603–607. doi:10.1214/aoms/1177728730
Tate, R. F. (1955a). Applications of correlation models for biserial data. Journal of the American Statistical Association, 50(272), 1078–1095. doi:10.2307/2281207
Tate, R. F. (1955b). The theory of correlation between two continuous variables when one is dichotomized. Biometrika, 42(1/2), 205–216. doi:10.2307/2333437
Tchébychef, P. (1867). Des valeurs moyenne. Journal de mathématiques pures et appliquées, 12(2), 177–184.
Terrell, G. R., & Scott, D. W. (1985). Oversmoothed Nonparametric Density Estimates. Journal of the American Statistical Association, 80(389), 209–214. doi:10.2307/2288074
Thacher, H. C. (1963). Algorithm 180: Error function—large X. Communications of the ACM, 6(6), 314–315. doi:10.1145/366604.366636
Tocher, K. D. (1963). The art of simulation. The English Universities Press.
Tomarken, A. J., & Serlin, R. C. (1986). Comparison of ANOVA alternatives under variance heterogeneity and specific noncentrality structures. Psychological Bulletin, 99(1), 90–99. doi:10.1037/0033-2909.99.1.90
Tomczak, M., & Tomczak, E. (2014). The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends in Sport Sciences, 1(21), 19–25.
Trawinski, B., Smetek, M., Telec, Z., & Lasota, T. (2012). Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms. International Journal of Applied Mathematics and Computer Science, 22(4). doi:10.2478/v10006-012-0064-z
Triola, M. F. (2010). Elementary statistics (11th ed). Addison-Wesley.
Tsay, W.-J., & Ke, P.-H. (2021). A simple approximation for the bivariate normal integral. Communications in Statistics - Simulation and Computation, 1–14. doi:10.1080/03610918.2021.1884718
Tubbs, J. D. (1989). A note on binary template matching. Pattern Recognition, 22(4), 359–365. doi:10.1016/0031-3203(89)90045-9
Tukey, J. W. (1962). The future of data analysis. The Annals of Mathematical Statistics, 33(1), 1–67. doi:10.1214/aoms/1177704711
Tukey, J. W. (1972). Some graphic and semigraphic displays. In T. A. Bancroft & S. A. Brown (Eds.), Statistical Papers in Honor of George W. Snedecor (pp. 293–316). Iowa State University Press.
Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley Pub. Co.
Tukey, J. W., & McLaughlin, D. H. (1963). Less vulnerable confidence and significance procedures for location based on a single sample: Trimming/Winsorization 1. Sankhyā: The Indian Journal of Statistics, 25(3), 331–352.
Tulimieri, D. (2021). CLES. https://github.com/tulimid1/CLES/tree/main
Tulloss, R. E. (1997). Assessment of similarity indices for undesirable properties and a new tripartite similarity index based on cost functions. In M. E. Palm & I. H. Chapela (Eds.), Mycology in sustainable development: Expanding concepts, vanishing borders (pp. 122–143). Parkway Pub.
U
Uebersax, J. (2006, August 30). McNemar tests of marginal homogeneity. Retrieved April 2, 2018, from http://www.john-uebersax.com/stat/mcnemar.htm
Upton, G. J. G. (1982). A comparison of alternative tests for the 2 x 2 comparative trial. Journal of the Royal Statistical Society. Series A (General), 145(1), 86–105. doi:10.2307/2981423
Upton, G. J. G., & Cook, I. (2014). Dictionary of statistics (3rd ed.). Oxford: Oxford University Press.
V
Van De Wiel, M. (2001). The split-up algorithm: A fast symbolic method for computing p-values of distribution-free statistics. Computational Statistics, 16(4), 519–538. doi:10.1007/s180-001-8328-6
van Geloven, N. (2018, March 13). Mann-Whitney U toets [Wiki]. Wikistatistiek. https://wikistatistiek.amc.nl/Mann-Whitney_U_toets
Vargha A. (2000). Két pszichológiai populáció sztochasztikus egyenlőségének ellenőrzésére alkalmas statisztikai próbák összehasonlító vizsgálata. Magyar Pszichológiai Szemle, 55(2–3), Article 2–3. doi:10/1/mpszle.55.2000.2-3.5.pdf
Vargha, A., & Delaney, H. D. (2000). A critique and improvement of the CL common language effect size statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics, 25(2), 101–132. doi:10.3102/10769986025002101
Vargha, A., & Delaney, H. D. (2000). Comparing several robust tests of stochastic equality. https://eric.ed.gov/?id=ED441836
Vasicek, O. A. (2015). A series expansion for the bivariate normal integral. In Finance, Economics and Mathematics (pp. 297–304). John Wiley & Sons, Inc. doi:10.1002/9781119186229.ch33
Vazquez-Leal, H., Castaneda-Sheissa, R., Filobello-Nino, U., Sarmiento-Reyes, A., & Sanchez Orea, J. (2012). High accurate simple approximation of normal distribution integral. Mathematical Problems in Engineering, 2012, 1–22. doi:10.1155/2012/124029
Vedder, J. D. (1993). An invertible approximation to the normal distribution function. Computational Statistics & Data Analysis, 16(1), 119–123. doi:10.1016/0167-9473(93)90248-R
Vining, G. G. (1998). Statistical methods for engineers. Duxbury Press.
W
Waissi, G. R., & Rossin, D. F. (1996). A sigmoid approximation of the standard normal integral. Applied Mathematics and Computation, 77(1), 91–95. doi:10.1016/0096-3003(95)00190-5
Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Transactions of the American Mathematical Society, 54(3), 426–482. doi:10.2307/1990256
Walker, F. A. (1874). Statistical Atlas of the United States Based on the Results of the Ninth Census 1870. Census Office.
Walsh, J. E. (1949a). Applications of some significance tests for the median which are valid under very general conditions. Journal of the American Statistical Association, 44(247), 342–355. doi:10.1080/01621459.1949.10483311
Walsh, J. E. (1949b). Some significance tests for the median which are valid under very general conditions. The Annals of Mathematical Statistics, 20(1), 64–81. doi:10.1214/aoms/1177730091
Warne, R. T. (2017). Statistics for the social sciences: A general linear model approach. Cambridge, UK: Cambridge University Press.
Warner, R. M. (2012). Applied statistics: From bivariate through multivariate techniques (2nd ed.). Thousand Oaks, CA: SAGE.
Warrens, M. J. (2008). Similarity coefficients for binary data: Properties of coefficients, coefficient matrices, multi-way metrics and multivariate coefficients [Doctoral dissertation, Universiteit Leiden]. https://hdl.handle.net/1887/12987
Watier, N. N., Lamontagne, C., & Chartier, S. (2011). What does the mean mean? Journal of Statistics Education, 19(2), 1–20.
Weibull, W. (1939). The phenomenon of rupture in solids. Ingeniörs Vetenskaps Akademien, 153, 1–55.
Weiers, R. M., Gray, J. B., & Peters, L. H. (2011). Introduction to business statistics (7th ed.). South-Western Cengage Learning.
Weinberg, S. L., & Abramowitz, S. K. (2008). Statistics using SPSS: An integrative approach (2nd ed.). New York, NY: Cambridge University Press.
Weisstein, E. W. (2002). CRC concise encyclopedia of mathematics (2nd ed.). Boca Raton: Chapman & Hall/CRC.
Welch, B. L. (1938). The significance of the difference between two means when the population variances are unequal. Biometrika, 29(3–4), 350–362. doi:10.1093/biomet/29.3-4.350
Welch, B. L. (1947). The generalization of `Student’s’ problem when several different population variances are Involved. Biometrika, 34(1/2), 28–35. doi:10.2307/2332510
Welch, B. L. (1951). On the comparison of several mean values: An alternative approach. Biometrika, 38(3/4), 330. doi:10.2307/2332579
Wenzl, M. (2016). The creation of RB Leipzig: Authentic identity or self-deception? Anchor Academic Publishing.
West, G. (2005). Better approximations to cumulative normal functions. Wilmott Magazine, 70–76. doi:10.1.1.353.1954
WhatIs.com. (n.d.). What is Pareto chart (Pareto distribution diagram)?. Retrieved April 20, 2014, from http://whatis.techtarget.com/definition/Pareto-chart-Pareto-distribution-diagram
Wijsman, R. A. (1996). New algorithms for the function T(h, a) of Owen, with application to bivariate normal and noncentral t-probabilities. Computational Statistics & Data Analysis, 21(3), 261–271. doi:10.1016/0167-9473(95)00018-6
Wikipedia. (2022). Mosaic plot. In Wikipedia. https://en.wikipedia.org/w/index.php?title=Mosaic_plot
Wikipedia. (n.d.). Wilcoxon signed-rank test. In Wikipedia. Retrieved August 30, 2020, from https://en.wikipedia.org/w/index.php?title=Wilcoxon_signed-rank_test&oldid=974561084
Wilcox, A. R. (1973). Indices of qualitative variation and political measurement. Political Research Quarterly, 26(2), 325–343. doi:10.1177/106591297302600209
Wilcox, R. R. (2012). Introduction to robust estimation and hypothesis testing (3rd ed.). Academic Press.
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80. doi:10.2307/3001968
Wilcoxon, F., Katti, S. K., & Wilcox, R. A. (1970). Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. In H. L. Harter & D. B. Owen, Selected tables in mathematical statistics (Vol. 1, pp. 171–259). Markham publishing company.
Wilkinson, L. (2005). The grammar of graphics (2nd ed). New York: Springer.
Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite hypotheses. The Annals of Mathematical Statistics, 9(1), 60–62. doi:10.1214/aoms/1177732360
Willett, P. (2003). Similarity-based approaches to virtual screening. Biochemical Society Transactions, 31(3), 603–606. doi:10.1042/bst0310603
Williams, D. A. (1976). Improved likelihood ratio tests for complete contingency tables. Biometrika, 63(1), 33–37. doi:10.2307/2335081
Williams, J. D. (1946). An approximation to the probability integral. The Annals of Mathematical Statistics, 17(3), 363–365. doi: 10.1214/aoms/1177730951
Wilson, E. B. (1927). Probable Inference, the Law of Succession, and Statistical Inference. Journal of the American Statistical Association, 22(158), 209–212. doi:10.2307/2276774
Winitzki, S. (2008). A handy approximation for the error function and its inverse. 1–2.
Winthrop. (n.d.). The Wilcoxon signed rank test for one sample. Winthrop Univerisy Hospital. https://nyuwinthrop.org/wp-content/uploads/2019/08/wilcoxon-sign-rank-test-one-sample.pdf
Wolfe, D. A., & Hogg, R. V. (1971). On constructing statistics and reporting data. The American Statistician, 25(4), 27–30. doi:10.1080/00031305.1971.10477278
Wrenn, B., Loudon, D. L., & Stevens, R. E. (2002). Marketing research: text and cases. New York: Best Business Books.
Wright, D. B., & London, K. (2009). First (and second) steps in statistics (2nd ed.). Los Angeles, CA: SAGE.
Wuensch, K. (2009). Cohen’s conventions for small, medium, and large effects. https://imaging.mrc-cbu.cam.ac.uk/statswiki/FAQ/effectSize?action=AttachFile&do=get&target=esize.doc
X
Xue, X. (2020). Improved approximations of Hedges’ g*. doi:10.48550/arXiv.2003.06675
Y
Yates, F. (1934). Contingency tables involving small numbers and the chi square test. Supplement to the Journal of the Royal Statistical Society, 1(2), 217–235. doi:10.2307/2983604
Yeo, I.-K. (2017). An algorithm for computing the exact distribution of the Wilcoxon signed-rank statistic. Journal of the Korean Statistical Society, 46(3), 328–338. doi:10.1016/j.jkss.2016.11.003
Yerukala, R., & Boiroju, N. K. (2015). Approximations to standard normal distribution function. International Journal of Scientific & Engineering Research, 6(4), 515–518.
Yerukala, R., Boiroju, N. K., & Reddy, M. K. (2011). An approximation to the cdf of standard normal distribution. International Journal of Mathematical Archive, 2(7), 1077–1079.
Yiğit, E., & Gökpinar, F. (2010). A simulation study on tests for one-way ANOVA under the unequal variance assumption. Communications, Faculty Of Science, University of Ankara Series A1Mathematics and Statistics, 15–34. doi:10.1501/Commua1_0000000660
Young, J. C., & Minder, Ch. E. (1974). Algorithm AS 76: An integral useful in calculating non-central t and bivariate normal probabilities. Applied Statistics, 23(3), 455. doi:10.2307/2347148
Yuen, K. K. (1974). The two-sample trimmed t for unequal population variances. Biometrika, 61(1), 165–170. doi:10.1093/biomet/61.1.165
Yuen, K. K., & Dixon, W. J. (1973). The approximate behaviour and performance of the two-sample trimmed t. Biometrika, 60(2), 369–374. doi:10.2307/2334550
Yule, G. U. (1900). On the Association of Attributes in Statistics: With Illustrations from the Material of the Childhood Society, &c. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 194, 257–319.
Yule, G. U. (1911). An introduction to the theory of statistics. Charles Griffin.
Yule, G. U. (1912). On the methods of measuring association between two attributes. Journal of the Royal Statistical Society, 75(6), 579–652. doi:10.2307/2340126
Yun, B.-I. (2009). Approximation to the cumulative normal distribution using hyperbolic tangent based functions. Journal of the Korean Mathematical Society, 46(6), 1267–1276. doi:10.4134/JKMS.2009.46.6.1267
Z
Zaiontz, C. (n.d.). Fligner-Policello test. Real Statistics Using Excel. Retrieved July 24, 2023, from https://real-statistics.com/non-parametric-tests/fligner-policello-test/
Zaiontz, C. (n.d.). One-sample effect size. Real Statistics Using Excel. Retrieved July 15, 2022, from https://www.real-statistics.com/students-t-distribution/one-sample-t-test/one-sample-effect-size
Zaiontz, C. (n.d.-b). Wilcoxon signed ranks exact test. Real Statistics Using Excel. Retrieved January 25, 2023, from https://real-statistics.com/non-parametric-tests/wilcoxon-signed-ranks-test/wilcoxon-signed-ranks-exact-test
Zedeck, S. (Ed.). (2014). APA dictionary of statistics and research methods. Washington, DC: American Psychological Association.
Zelen, M., & Severo, N. C. (1960). Graphs for bivariate normal probabilities. The Annals of Mathematical Statistics, 31(3), 619–624. doi:10.1214/aoms/1177705789
Zelen, M., & Severo, N. C. (1970). Probability Functions. In M. Abramowitz & I. A. Stegun, Handbook of mathematical functions (9th ed., pp. 925–995). Dover.
Zhang, B., & Srihari, S. N. (2003). Binary vector dissimilarity measures for handwriting identification (T. Kanungo, E. H. Barney Smith, J. Hu, & P. B. Kantor, Eds.; pp. 28–38). doi:10.1117/12.473347
Google adds